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Infinite Brain Tumor Images:
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Abstract

Due to the lack of available annotated medical im-

ages, accurate computer-assisted diagnosis requires inten-

sive Data Augmentation (DA) techniques; however, those

transformed images intrinsically have a similar distribu-

tion to the original ones, leading to limited performance

improvement. To fill the data lack in the real image distri-

bution, we synthesize brain contrast-enhanced Magnetic

Resonance (MR) images—realistic but completely differ-

ent from the original ones—using Generative Adversarial

Networks (GANs). This study exploits Progressive Grow-

ing of GANs (PGGANs), a multi-stage generative train-

ing method, to generate original-sized 256× 256 MR im-

ages for convolutional neural network-based brain tumor

detection, which is challenging via conventional GANs;

difficulties arise due to unstable GAN training with high

resolution and a variety of tumors in size, location, shape,

and contrast. Our preliminary results show that this novel

PGGAN-based DA method can achieve promising perfor-

mance improvement, when combined with classical DA, in

tumor detection and also in other medical imaging tasks.
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Fig. 1 PGGAN-based DA for better tumor detection: the PG-

GANs method generates a number of realistic brain

tumor/non-tumor MR images and the binary classifier

uses them as additional training data.

1. Introduction

Convolutional Neural Networks (CNNs) have dramati-

cally improved medical image analysis, such as brain Mag-

netic Resonance Imaging (MRI) segmentation [1], primar-

ily thanks to large-scale annotated training data. Unfortu-

nately, obtaining such massive medical data is challenging;

consequently, better training requires intensive Data Aug-

mentation (DA) techniques, such as geometry/intensity

transformations of original images [2].

However, those transformed images intrinsically have a

similar distribution with the original ones, leading to lim-

ited performance improvement; thus, generating realistic

(i.e., similar to the real image distribution) but completely

new samples is essential to fill the real image distribution

uncovered by the original dataset. In this context, Gener-
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ative Adversarial Network (GAN)-based DA is promising,

as it has shown excellent performances in computer vision,

revealing good generalization ability, such as drastic im-

provement in eye-gaze estimation using SimGAN [3].

Also in medical imaging, realistic retinal image and

Computed Tomography (CT) image generation have been

tackled using adversarial learning [4], [5]; a very recent re-

search reported performance improvement with synthetic

training data in CNN-based liver lesion classification, us-

ing a small number of 64× 64 CT images for GAN train-

ing [6]. However, GAN-based image generation using

MRI, the most effective modality for soft-tissue acquisi-

tion, has not yet been reported due to the difficulties from

low-contrast MR images, strong anatomical consistency,

and intra-sequence variability; in our previous work [7],

we generated 64 × 64/128 × 128 MR images using con-

ventional GANs and even an expert physician failed to

accurately distinguish between the real/synthetic images.

So, how can we generate highly-realistic and original-

sized 256 × 256 images, while maintaining clear

tumor/non-tumor features using GANs? Our aim is

to generate GAN-based synthetic contrast enhanced

T1-weighted (T1c) brain MR images—the most com-

monly used sequence in tumor detection thanks to its

high contrast—for CNN-based tumor detection. This

256 × 256 image generation is extremely challenging: (i)

GAN training is unstable with high-resolution inputs

and severe artifacts appear due to strong consistency in

brain anatomy; (ii) brain tumors vary in size, location,

shape, and contrast. However, it is beneficial, because

most CNN architectures adopt around 256 × 256 input

sizes (e.g., InceptionResNetV2: 299 × 299, ResNet-50:

224 × 224 [10]) and we can obtain better performance

with original-sized image augmentation—towards this,

we use Progressive Growing of GANs (PGGANs) [8],

a multi-stage generative training method. Using the

synthetic images, our novel PGGAN-based medical DA

method achieves better performance in CNN-based tumor

detection, when combined with classical DA (Fig. 1).

Contributions. Our main contributions are:

• MR Image Generation: This research explains

how to exploit MR Images to generate realistic and

original-sized 256 × 256 MR images using PGGANs,

while maintaining clear tumor/non-tumor features.

• MR Image Augmentation: The proposed study

shows encouraging results on PGGAN-based DA,

when combined with classical DA, for better brain

tumor detection and other medical imaging tasks.

T1c (Real tumor, 256 × 256)

T1c (Real non-tumor, 256 × 256)

Fig. 2 Example real MR images used for PGGAN training.

2. Materials and Methods

2.1 The BRATS 2016 Training Dataset

This paper exploits a dataset of 240×240 T1c brain ax-

ial MR images containing 220 High-Grade Glioma cases

to train PGGANs with sufficient data and resolution.

2.2 Proposed PGGAN-based Image Generation

Pre-processing. We select the slices from #30 to #130

among the whole 155 slices to omit initial/final slices,

since they convey a negligible amount of useful informa-

tion and could affect the training of both PGGANs and

ResNet-50. For tumor detection, our whole dataset (220

patients) is divided into: (i) a training set (154 patients);

(ii) a validation set (44 patients); (iii) a test set (22 pa-

tients). Only the training set is used for the PGGAN

training to be fair. Since tumor/non-tumor annotations

are based on 3D volumes, these labels are often incor-

rect/ambiguous on 2D slices; so, we discard (i) tumor im-

ages tagged as non-tumor, (ii) non-tumor images tagged

as tumor, (iii) unclear boundary images, and (iv) too

small/big images; after all, our datasets are composed of:

• Training set (5,036 tumor/3,853 non-tumor images);

• Validation set (793 tumor/640 non-tumor images);

• Test set (1,575 tumor/1,082 non-tumor images).

The training set’s images are zero-padded to reach a

power of 2, 256 × 256 from 240 × 240 pixels for better

PGGAN training. Fig. 2 shows example real MR images.

PGGANs is a novel training method for GANs with

a progressively growing generator and discriminator [8]:

starting from low resolution, newly added layers model

fine-grained details as training progresses. As Fig. 3

shows, we adopt PGGANs to generate highly-realistic and

original-sized 256 × 256 brain MR images; tumor/non-

tumor images are separately trained and generated.

PGGAN Implementation Details. We use the PG-

GAN architecture with the Wasserstein loss using gradient

penalty [9]. Training lasts for 100 epochs with a batch size

of 16 and 1.0× 10−3 learning rate for Adam optimizer.
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Fig. 3 PGGAN architecture for MR image generation.
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Fig. 4 Example real MR image and its geometrically-

transformed synthetic images.

2.3 Tumor Detection Using ResNet-50

Pre-processing. To fit ResNet-50’s input size, we center-

crop all images from 240× 240 to 224× 224 pixels.

ResNet-50 is a residual learning-based CNN with 50 lay-

ers [10]: unlike conventional learning unreferenced func-

tions, it reformulates the layers as learning residual func-

tions for sustainable and easy training. We adopt ResNet-

50 to detect tumors in brain MR images, i.e., the binary

classification of images with/without tumors.

To confirm the effect of PGGAN-based DA, the fol-

lowing classification results are compared: (i) without

DA, (ii) with 200, 000 classical DA (100, 000 for each

class), (iii) with 200, 000 PGGAN-based DA, and (iv)

with both 200, 000 classical DA and 200, 000 PGGAN-

based DA; the classical DA adopts a random combination

of horizontal/vertical flipping, rotation up to 10 degrees,

width/height shift up to 8%, shearing up to 8%, zooming

up to 8%, and constant filling of points outside the in-

put boundaries (Fig. 4). For better DA, highly-unrealistic

PGGAN-generated images are manually discarded.

ResNet-50 Implementation Details. We use the

ResNet-50 architecture with a dropout of 0.5 before the fi-

nal softmax layer, along with a batch size of 192, 1.0×10−3

learning rate for Adam, and early stopping of 10 epochs.

T1c (Synthetic tumor, 256 × 256)

T1c (Synthetic non-tumor, 256 × 256)

Successful

Successful

Failed

Failed

Fig. 5 Example synthetic MR images yielded by PGGANs: (a)

successful cases; (b) failed cases.

3. Results

This section shows how PGGANs generates synthetic

brain MR images. The results include instances of syn-

thetic images and their influence on tumor detection.

3.1 MR Images Generated by PGGANs

Fig. 5 illustrates examples of synthetic tumor/non-

tumor images by PGGANs. In our visual confirmation,

for about 75% of cases, PGGANs successfully captures the

T1c-specific texture and tumor appearance while main-

taining the realism of the original brain MR images; how-

ever, for about 25% of cases, the generated images lack

clear tumor/non-tumor features or contain unrealistic fea-

tures, such as hyper-intensity, gray contours, and odd ar-

tifacts.

3.2 Tumor Detection Results

Table 1 shows the classification results for detecting

brain tumors with/without DA techniques. As expected,

the test accuracy improves by 0.64% with the additional

200, 000 geometrically-transformed images for training.

When only the PGGAN-based DA is applied, the test

accuracy decreases drastically with almost 100% of sensi-

tivity and 6.84% of specificity, because the classifier recog-

nizes the synthetic images’ prevailed unrealistic features

as tumors, similarly to anomaly detection.

However, surprisingly, when it is combined with the

classical DA, the accuracy increases by 1.02% with higher

sensitivity and specificity; probably, this occurs because

the PGGAN-based DA fills the real image distribution

uncovered by the original dataset, while the classical DA

provides the robustness on training for most cases.

4. Conclusion

Our preliminary results show that PGGANs can gen-

erate original-sized 256 × 256 realistic brain MR images

and achieve higher performance in tumor detection, when
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Table. 1 Binary classification results for detecting brain tumors with/without DA.

Accuracy (%) Sensitivity Specificity

ResNet-50 (w/o DA) 90.06 85.27 97.04

ResNet-50 (w/ 200k classical DA) 90.70 88.70 93.62

ResNet-50 (w/ 200k PGGAN-based DA) 62.02 99.94 6.84

ResNet-50 (w/ 200k classical DA + 200k PGGAN-based DA) 91.08 86.60 97.60

combined with classical DA. This occurs because PG-

GANs’ multi-stage image generation achieves good gener-

alization and synthesizes images with the real image distri-

bution unfilled by the original dataset. However, consid-

ering the Visual Turing Test results, yet unsatisfactory re-

alism with high resolution strongly limit DA performance,

so we plan to (i) discard unrealistic images or (ii) gener-

ate only realistic images, and then (iii) refine synthetic

images more similar to the real image distribution.

For (i), classifier two-sample tests [11], assessing

whether two samples are drawn from the same distribu-

tion, can help discard images not from the real image dis-

tribution, as manual removal is demanding. Regarding

(ii), we can map an input random vector onto each train-

ing image [12] and generate images with suitable vectors,

to control the divergence of generated images; virtual ad-

versarial training [13] can be also integrated to control the

output distribution. Lastly, (iii) can be achieved by GAN-

based image-to-image translation, such as CycleGAN [14],

considering SimGAN’s remarkable performance improve-

ment after refinement [3]. Moreover, we should further

avoid real images with ambiguous/inaccurate annotation

for better tumor detection.

To evaluate the realism of the generated images, t-

Distributed Stochastic Neighbor Embedding (t-SNE) [15]

can visualize the distribution of tumor/non-tumor im-

ages by extracting the features from the last layer of a

trained CNN. Overall, our novel PGGAN-based DA ap-

proach sheds light on diagnostic and prognostic medical

applications, not limited to tumor detection; future stud-

ies are needed to extend our encouraging results.
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