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Abstract

Recently, large-scale image classification has made a kailarprogress because
of the significant advancement in the representation of @fagtures. To realize
scalable systems that can handle millions of training samphd tens of thou-
sands of categories, it is crucially important to develggzdminative image sig-
natures that are compatible to linear classifiers. One gbtbmising approaches
to realize this is to encode high-level statistics of loestlires. Many state-of-
the-art large-scale systems are following this approachteve made remark-
able progress over the past few years. However, while fidgrostatistics are
frequently used in many methods, the power of higher-ortéissics has not re-
ceived much attention.

In this work, we propose arflicient method to exploit the second-order statistics
of local features. For each visual word, the local featufdsaining samples are
modeled with a Gaussian, and descriptors from two imagesampared using a
Fisher vector with respect to the Gaussian. In experimar@show the promising
performance of our method.

1 Introduction

Recently, remarkable progress has been made in the laaigestegorization of images. One of the
breakthroughs that has made this possible is the advanteifrtbe representation of image features
that are compatible to linear classifiers. Hitherto, mosagercategorization systems have used
small training datasets and depended on non-linear clxsssfich as kernel SVMs. However, these
systems cannot be scaled to handle larger data becausentipeitedional complexity for training
non-linear classifiers is general(N?) ~ O(N3), whereN is the number of training samples [22].
Therefore, linear classification is probably the only ckdim accomplish large-scale training within
a realistic time frame. However, to successfully apply dinelassifiers, we also need to exploit
linearly separable image signatures. Moreover, thesasiges should have a high discriminative
power so as to be able to distinguish tens of thousands ofdroatggories. In this work, we focus
on this topic and develop a new feature coding method baséukastatistics of local descriptors.

2 Reéated Work and Our Contribution

Previous work on image-feature coding falls basically itwto main approaches. The first is the
vector quantization-based approach, also known as bagso&l-words (BoVW) [4]. This has been
the de-facto standard method for the image-categorizgtiohlem for a long time. However, as
the original BoVW vector has a strong non-linear propettynust be used with a kernel classi-
fier to obtain reasonable performance. This is prohibitovetifie large-scale problems as we have
described. Therefore, state-of-the-art BoVW techniquesdasigned so that the resultant feature
vector is directly applicable to linear classifiers. This && achieved by explicit kernel embedding
[14, 17] of a traditional BoVW, or new coding methods basesparse coding [22, 21].



Figure 1: lllustration of our method. Stars represent Mist@ds. Red dots and blue dots represent
descriptors from each single image. These descriptorsampared using the Gaussian metrics
specific for each visual word.

The second approach goes beyond the simple count stati§tibg traditional BoVW technique
and utilizes higher-order statistics of local featurest &ample, the VLAD method [10] uses the
sum of diference in the vectors of local features from their nearestaliwords. This is interpreted
as exploiting the first-order statistics of local featur&uper-vector coding [23] concatenates the
count statistics and the first-order statistics, wheread-tiher vector [18] utilizes mean and vari-
ance statistics in a sophisticated information geomeaméwork [9]. Local features from training
corpus are modeled with a Gaussian Mixture Model (GMM), drahteach image is represented by
the deviation from the GMM. In fact, VLAD can be interpreteslaasimplified version of the Fisher
vector. It has been shown that these high-level statisinsdcamatically improve recognition per-
formance with a reduced number of visual words. In additamthey are carefully derived to be
applicable to linear classifiers, they are particulaffgetive for large-scale problems. For example,
the winning systems of the ImageNet large-scale visualgeition challenge 2010 [1] and 2011 [2]
used super-vector coding and Fisher vectors, respectively

In this work, we focus on the second approach. In short, wesrgit to include more statistics of
local features to further improve the performance of thigrapch. Because the standard Fisher vec-
tor assumes a GMM with diagonal matrices, statistical im@ion related to correlation is missed,
which we believe is the key for discrimination. We take thenstard SIFT descriptor [13] as an
example. As SIFT consists of local edge histograms, cdioels of elements correspond to spe-
cific middle-level shape patterns over an image. This typafofmation is thought to provide rich
discriminative cues for classification. Of course, in tlyetre Fisher vector could utilize such infor-
mation by modeling a GMM with full covariance matrices; hewe the cost would be prohibitive
for real problems.

To the best of our knowledge, the VLAT method [19] has beenotfilg method that successfully
uses full second-order statistics (variance and co-veelanT his method is an extension of VLAD
and concatenates the elements of higher-order tensor gigodlt has been shown that the inner
products of VLAT vectors approximate the sum kernel on bajddr a Gaussian kernel when
suficiently high-order tensors are exploited. This fact theoa#ly supports the adequacy of using
VLAT with linear classifiers, although, at most the secomden tensors are considered in practice.
In this work, we propose an alternative approach for enagpdircond-order statistics using local
Gaussian metrics and explain it in the next section.

3 Our Approach

Our approach is essentially a hybrid of the Fisher approadiVa.AT (Fig. 1). First, we compute

K visual words{cn}r'f:1 via k-means clustering as in the usual BoVW. Local featufesaining
samples in each Voronoi cell are modeled with a Gaussiandasdriptors of two images in this
area are compared using the Fisher vector with respect tG#ussian. Although we fit a single
Gaussian independently for each visual word (Voronoi celd estimate the full covariance matrix
of the Gaussian. This is a majorfidirence from the standard implementation of the Fisher vecto



where only the diagonal elements of Gaussians are estimdted fitting a GMM. In this way,
we can diciently exploit the second order statistics of local feasuwith a theoretically supported
metric. We name our method the Vectors of Locally Aggreg&adssian-gradients (VLAG).

3.1 Embedding Local Gaussian Metrics

Nakayamaet al. [15] proposed a method of modeling whole local features fimages with a single
Gaussian and derived its Fisher vector-like represemtdétiolinear classification. Here we extend
this method to handle the local structure of a feature space.

Let x € RY denote a local feature. For each area (cell) spanned by dispésual wordc,,, we first
encode the local features with their sum and correlationteced toc,.

Specifically, for an imagé,

(Xi = Cn)
xi such that NNix;)=cn
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whereupper() is the flattened vector of the components in the upperdrtitar part of a symmetric
matrix. Therefore, the dimension of this signaturalis d(d + 1)/2. The local representation of
this is the same as that of VLAT. In reality, this signatureresponds to the gradient vector of local
features taking a Gaussian as the generative model [15].usifeef normalize this vector with the
inverse of the Fisher information matrix as in the Fisherteeframework, which we denote 1,

in the following.

The Gaussian parameters of the local features from theeeméiming set in then-th cell are as
follows.

1
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where|T,| is the number of sample features. Using them, we can explwitain G, in a closed
form. For details, refer to [15]. Thus, descriptors of ang®h in then-the cell are encoded as the
Fisher vector of a local Gaussian.

din= G%/Z']i,n- (4)

Finally, all {Q,n}rlle are concatenated, and subsequently, are power-law nasdaind L2 normal-
ized [18]. This is the resultant image signature of our psgabVLAG method.

4 Experiments

41 Setup

We validate our method using standard benchmarks for incatggorization problems. Namely,
we use 15 scene [12], Caltech-101 [6], and Caltech-256 [Bisd#s. If images are large, they are
resized to 10K pixels. For the 15 scene dataset, we use 108lemper class for training and the
remaining samples for testing. For the Caltech-101 ance€lal256 datasets, we use 30 samples for
training and 50 for testing, for each class. Performancedkiated by the mean of the classification
rate for each class. We report the average score of five, trealdomly replacing the samples.

To extract local features, we use the SIFT descriptor [18]albexperiments in this work. We
extract local features from 2424 patches on regular grids with a spacing of 5 pixels. Fur8Ii&T
descriptors are compressed into 32 dimensions using PG#&pexor the usual BoVW baseline.
For BoVW, we apply histogram intersection kernel and use mlim®ar SVM to provide a fair
baseline in terms of the recognition accuracy. For otheresgmtations, we directly use a linear
SVM. We use libsvm [3] and liblinear [5] packages for the iepkentations of non-linear and linear
SVMs, respectively. Note that we do not include any spatidrimation because we focus on the
performance of feature coding methods.



Table 1: Comparison of classification rate on the 15 scerasdaf%).

Dictionary size| 200 500 1000 2000 4000 8000

BoVW 69.1 746 764 774 775 776

Dictionary size| 1 2 4 8 16 32 64 128 256
VLAD 479 56.0 604 648 685 705 751 745 759
Fisher vector | 63.3 68.0 721 751 76.7 778 793 79.80.0

VLAT 719 730 745 757 768 778 771

VLAG (Ours) | 745 75.7 769 77.6 788 79.780.1

Table 2: Comparison of classification rate on the Caltechddlaset (%).

Dictionary size| 200 500 1000 2000 4000 8000

BoVW 420 454 473 478 481 474

Dictionary size| 1 2 4 8 16 32 64 128 256
VLAD 173 247 316 359 418 446 485 499 518
Fishervector | 31.5 385 425 475 512 526 549 555 56.2
VLAT 43.2 457 482 508 538 557 574

VLAG (Ours) | 46.2 494 51.0 542 56.4 57.958.3

Table 3: Comparison of classification rate on the Caltedhd&aset (%).

Dictionary size| 200 500 1000 2000 4000 8000

BoVW 186 208 220 226 227 224

Dictionary size| 1 2 4 8 16 32 64 128 256
VLAD 59 82 104 134 164 187 204 213 224
Fishervector | 126 164 186 221 237 250 257 26.6 27.3
VLAT 18.7 20.2 214 232 252 265 279

VLAG (Ours) | 20.2 224 234 253 27.7 28.7295

4.2 Experimental Results

Tables 1, 2, and 3 summarize the results for the 15 sceneedfiali01, and Caltech-256 datasets,
respectively. We empirically found that power-law normation is also fective for VLAD and
VLAT. Therefore, we apply it to them when it improves theirfeemance. We did not test VLAG
and VLAT with more than 64 visual words as the dimension ofrtfeature vectors become too
large. In addition, we observed that 64 visual words alregalie a satisfactory performance.

Overall, VLAG and VLAT achieve high accuracy with a small noen of visual words. It is sur-
prising that by just using a few or several visual words, rtperformances are well comparable to
those of BoVW with a non-linear kernel using thousands ofdsoiThis result shows the power of
higher-level statistics for feature coding. Moreover, visserved that VLAG consistently outper-
forms VLAT, indicating the importance of embedding a bettestric to fully exploit the statistical
properties of local features.

5 Conclusion

In this work, we proposed a novel method of feature codinggiie second-order statistics of local
descriptors. We compared our method with closely relatethoas and showed itsfectiveness.
Because our image signature is rather high-dimensionabpplicable to linear classifiers, it is
expected to be more powerful when used for large-scale @nahl In future, we would like to apply
our method to large-scale problems and compare it with ctiage-of-the-art feature coding methods
such as locality-constrained linear coding [21]. In adbudtitiit would be of interest to include spatial
information [12, 11] and introduceflecient compression techniques [20, 16] to realize practical
systems.
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