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Abstract

Recently, large-scale image classification has made a remarkable progress because
of the significant advancement in the representation of image features. To realize
scalable systems that can handle millions of training samples and tens of thou-
sands of categories, it is crucially important to develop discriminative image sig-
natures that are compatible to linear classifiers. One of thepromising approaches
to realize this is to encode high-level statistics of local features. Many state-of-
the-art large-scale systems are following this approach and have made remark-
able progress over the past few years. However, while first-order statistics are
frequently used in many methods, the power of higher-order statistics has not re-
ceived much attention.
In this work, we propose an efficient method to exploit the second-order statistics
of local features. For each visual word, the local features of training samples are
modeled with a Gaussian, and descriptors from two images arecompared using a
Fisher vector with respect to the Gaussian. In experiments,we show the promising
performance of our method.

1 Introduction

Recently, remarkable progress has been made in the large-scale categorization of images. One of the
breakthroughs that has made this possible is the advancement of the representation of image features
that are compatible to linear classifiers. Hitherto, most image-categorization systems have used
small training datasets and depended on non-linear classifiers such as kernel SVMs. However, these
systems cannot be scaled to handle larger data because the computational complexity for training
non-linear classifiers is generallyO(N2) ∼ O(N3), whereN is the number of training samples [22].
Therefore, linear classification is probably the only choice to accomplish large-scale training within
a realistic time frame. However, to successfully apply linear classifiers, we also need to exploit
linearly separable image signatures. Moreover, these signatures should have a high discriminative
power so as to be able to distinguish tens of thousands of image categories. In this work, we focus
on this topic and develop a new feature coding method based onthe statistics of local descriptors.

2 Related Work and Our Contribution

Previous work on image-feature coding falls basically intotwo main approaches. The first is the
vector quantization-based approach, also known as bag-of-visual-words (BoVW) [4]. This has been
the de-facto standard method for the image-categorizationproblem for a long time. However, as
the original BoVW vector has a strong non-linear property, it must be used with a kernel classi-
fier to obtain reasonable performance. This is prohibitive for the large-scale problems as we have
described. Therefore, state-of-the-art BoVW techniques are designed so that the resultant feature
vector is directly applicable to linear classifiers. This can be achieved by explicit kernel embedding
[14, 17] of a traditional BoVW, or new coding methods based onsparse coding [22, 21].



Figure 1: Illustration of our method. Stars represent visual words. Red dots and blue dots represent
descriptors from each single image. These descriptors are compared using the Gaussian metrics
specific for each visual word.

The second approach goes beyond the simple count statisticsof the traditional BoVW technique
and utilizes higher-order statistics of local features. For example, the VLAD method [10] uses the
sum of difference in the vectors of local features from their nearest visual words. This is interpreted
as exploiting the first-order statistics of local features.Super-vector coding [23] concatenates the
count statistics and the first-order statistics, whereas the Fisher vector [18] utilizes mean and vari-
ance statistics in a sophisticated information geometry framework [9]. Local features from training
corpus are modeled with a Gaussian Mixture Model (GMM), and then each image is represented by
the deviation from the GMM. In fact, VLAD can be interpreted as a simplified version of the Fisher
vector. It has been shown that these high-level statistics can dramatically improve recognition per-
formance with a reduced number of visual words. In addition,as they are carefully derived to be
applicable to linear classifiers, they are particularly effective for large-scale problems. For example,
the winning systems of the ImageNet large-scale visual recognition challenge 2010 [1] and 2011 [2]
used super-vector coding and Fisher vectors, respectively.

In this work, we focus on the second approach. In short, we attempt to include more statistics of
local features to further improve the performance of this approach. Because the standard Fisher vec-
tor assumes a GMM with diagonal matrices, statistical information related to correlation is missed,
which we believe is the key for discrimination. We take the standard SIFT descriptor [13] as an
example. As SIFT consists of local edge histograms, correlations of elements correspond to spe-
cific middle-level shape patterns over an image. This type ofinformation is thought to provide rich
discriminative cues for classification. Of course, in theory, the Fisher vector could utilize such infor-
mation by modeling a GMM with full covariance matrices; however, the cost would be prohibitive
for real problems.

To the best of our knowledge, the VLAT method [19] has been theonly method that successfully
uses full second-order statistics (variance and co-variance). This method is an extension of VLAD
and concatenates the elements of higher-order tensor products. It has been shown that the inner
products of VLAT vectors approximate the sum kernel on bags [7] for a Gaussian kernel when
sufficiently high-order tensors are exploited. This fact theoretically supports the adequacy of using
VLAT with linear classifiers, although, at most the second-order tensors are considered in practice.
In this work, we propose an alternative approach for encoding second-order statistics using local
Gaussian metrics and explain it in the next section.

3 Our Approach

Our approach is essentially a hybrid of the Fisher approach and VLAT (Fig. 1). First, we compute
K visual words{cn}

K
n=1 via k-means clustering as in the usual BoVW. Local features of training

samples in each Voronoi cell are modeled with a Gaussian, anddescriptors of two images in this
area are compared using the Fisher vector with respect to theGaussian. Although we fit a single
Gaussian independently for each visual word (Voronoi cell), we estimate the full covariance matrix
of the Gaussian. This is a major difference from the standard implementation of the Fisher vector,



where only the diagonal elements of Gaussians are estimatedwhen fitting a GMM. In this way,
we can efficiently exploit the second order statistics of local features with a theoretically supported
metric. We name our method the Vectors of Locally AggregatedGaussian-gradients (VLAG).

3.1 Embedding Local Gaussian Metrics

Nakayamaet al. [15] proposed a method of modeling whole local features fromimages with a single
Gaussian and derived its Fisher vector-like representation for linear classification. Here we extend
this method to handle the local structure of a feature space.

Let x ∈ Rd denote a local feature. For each area (cell) spanned by a specific visual wordcn, we first
encode the local features with their sum and correlations centered tocn.

Specifically, for an imageIi,

ηi,n =































∑

xi such that NN(xi)=cn

(xi − cn)

upper

(

∑

xi such that NN(xi)=cn

(xi − cn)(xi − cn)T

)































, (1)

whereupper() is the flattened vector of the components in the upper triangular part of a symmetric
matrix. Therefore, the dimension of this signature isd + d(d + 1)/2. The local representation of
this is the same as that of VLAT. In reality, this signature corresponds to the gradient vector of local
features taking a Gaussian as the generative model [15]. We further normalize this vector with the
inverse of the Fisher information matrix as in the Fisher vector framework, which we denote byGn
in the following.

The Gaussian parameters of the local features from the entire training set in then-th cell are as
follows.

µn =
1
|Tn|

∑

x such that NN(x)=cn

(x − cn), (2)

Cn =
1
|Tn|

∑

x such that NN(x)=cn

(x − cn − µn)(x − cn − µn)T , (3)

where|Tn| is the number of sample features. Using them, we can explicitly obtainGn in a closed
form. For details, refer to [15]. Thus, descriptors of an image Ii in then-the cell are encoded as the
Fisher vector of a local Gaussian.

ζi,n = G1/2
n ηi,n. (4)

Finally, all {ζi,n}Kn=1 are concatenated, and subsequently, are power-law normalized and L2 normal-
ized [18]. This is the resultant image signature of our proposed VLAG method.

4 Experiments

4.1 Setup

We validate our method using standard benchmarks for image-categorization problems. Namely,
we use 15 scene [12], Caltech-101 [6], and Caltech-256 [8] datasets. If images are large, they are
resized to 10K pixels. For the 15 scene dataset, we use 100 samples per class for training and the
remaining samples for testing. For the Caltech-101 and Caltech-256 datasets, we use 30 samples for
training and 50 for testing, for each class. Performance is evaluated by the mean of the classification
rate for each class. We report the average score of five trials, randomly replacing the samples.

To extract local features, we use the SIFT descriptor [13] for all experiments in this work. We
extract local features from 24× 24 patches on regular grids with a spacing of 5 pixels. Further, SIFT
descriptors are compressed into 32 dimensions using PCA, except for the usual BoVW baseline.
For BoVW, we apply histogram intersection kernel and use a non-linear SVM to provide a fair
baseline in terms of the recognition accuracy. For other representations, we directly use a linear
SVM. We use libsvm [3] and liblinear [5] packages for the implementations of non-linear and linear
SVMs, respectively. Note that we do not include any spatial information because we focus on the
performance of feature coding methods.



Table 1: Comparison of classification rate on the 15 scene dataset (%).

Dictionary size 200 500 1000 2000 4000 8000
BoVW 69.1 74.6 76.4 77.4 77.5 77.6
Dictionary size 1 2 4 8 16 32 64 128 256
VLAD 47.9 56.0 60.4 64.8 68.5 70.5 75.1 74.5 75.9
Fisher vector 63.3 68.0 72.1 75.1 76.7 77.8 79.3 79.680.0
VLAT 71.9 73.0 74.5 75.7 76.8 77.8 77.1
VLAG (Ours) 74.5 75.7 76.9 77.6 78.8 79.7 80.1

Table 2: Comparison of classification rate on the Caltech-101 dataset (%).

Dictionary size 200 500 1000 2000 4000 8000
BoVW 42.0 45.4 47.3 47.8 48.1 47.4
Dictionary size 1 2 4 8 16 32 64 128 256
VLAD 17.3 24.7 31.6 35.9 41.8 44.6 48.5 49.9 51.8
Fisher vector 31.5 38.5 42.5 47.5 51.2 52.6 54.9 55.5 56.2
VLAT 43.2 45.7 48.2 50.8 53.8 55.7 57.4
VLAG (Ours) 46.2 49.4 51.0 54.2 56.4 57.9 58.3

Table 3: Comparison of classification rate on the Caltech-256 dataset (%).

Dictionary size 200 500 1000 2000 4000 8000
BoVW 18.6 20.8 22.0 22.6 22.7 22.4
Dictionary size 1 2 4 8 16 32 64 128 256
VLAD 5.9 8.2 10.4 13.4 16.4 18.7 20.4 21.3 22.4
Fisher vector 12.6 16.4 18.6 22.1 23.7 25.0 25.7 26.6 27.3
VLAT 18.7 20.2 21.4 23.2 25.2 26.5 27.9
VLAG (Ours) 20.2 22.4 23.4 25.3 27.7 28.7 29.5

4.2 Experimental Results

Tables 1, 2, and 3 summarize the results for the 15 scene, Caltech-101, and Caltech-256 datasets,
respectively. We empirically found that power-law normalization is also effective for VLAD and
VLAT. Therefore, we apply it to them when it improves their performance. We did not test VLAG
and VLAT with more than 64 visual words as the dimension of their feature vectors become too
large. In addition, we observed that 64 visual words alreadygave a satisfactory performance.

Overall, VLAG and VLAT achieve high accuracy with a small number of visual words. It is sur-
prising that by just using a few or several visual words, their performances are well comparable to
those of BoVW with a non-linear kernel using thousands of words. This result shows the power of
higher-level statistics for feature coding. Moreover, we observed that VLAG consistently outper-
forms VLAT, indicating the importance of embedding a bettermetric to fully exploit the statistical
properties of local features.

5 Conclusion

In this work, we proposed a novel method of feature coding using the second-order statistics of local
descriptors. We compared our method with closely related methods and showed its effectiveness.
Because our image signature is rather high-dimensional butapplicable to linear classifiers, it is
expected to be more powerful when used for large-scale problems. In future, we would like to apply
our method to large-scale problems and compare it with otherstate-of-the-art feature coding methods
such as locality-constrained linear coding [21]. In addition, it would be of interest to include spatial
information [12, 11] and introduce efficient compression techniques [20, 16] to realize practical
systems.
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