
Efficient Discriminative Convolution Using Fisher Weight Map

Hideki Nakayama
http://www.nlab.ci.i.u-tokyo.ac.jp/

Graduate School of Information Science and Technology
The University of Tokyo, JAPAN

Abstract

Convolutional neural networks (CNNs) have been studied for a long time,
and recently gained increasingly more attention. Deep CNNs have espe-
cially achieved remarkably high performance on many visual recognition
tasks due to their high levels of flexibility. However, since CNNs require
numerous parameters to be tuned via iterative operations through layers,
their computational cost is immense. Moreover, they often require a huge
number of training samples and technical tricks, such as unsupervised
pretraining and heuristic tuning, to successfully train the system.

In this work, we present a very simple method of layer-wise con-
volution. We can obtain discriminative filters by using a Fisher weight
map (FWM) [8], which well separates convolved images between cate-
gories. This operation can be deterministically solved as a simple eigen-
value problem and no back propagation or hyper-parameters are needed.
Because our method is layer-wise and based on a simple eigenvalue prob-
lem, it is computationally efficient. We demonstrate the promising perfor-
mance of our method in extensive experiments with two datasets.

Network architecture

Let x(k)
(x′ ,y′) denote a vector of stacked features in a receptive filed in the

k-th layer (see Figure 1), and X denote a matrix that contains all x(k) from
an instance in its columns. Also, we let z = XT w denote a convolved
image vector via projection w. FWM finds discriminative projections by
maximizing between-class distance of z. The optimal weights can be an-
alytically obtained by solving the following eigenvalue problem.

ΣBw = λΣW w. (1)

Here, ΣW and ΣB are within- and between-class scatter matrices, namely

ΣW =

C∑
j=1

N j∑
i=1

(X(j)
i − X̄(j))(X(j)

i − X̄(j))T , (2)

ΣB =

C∑
j=1

N j(X̄(j)
− X̄)(X̄(j)

− X̄)T , (3)

where C is the number of categories and N j is the number of training
samples in class j.

Moreover, we found that the key to achieving the best performance
was to use the above method with appropriate methods of pooling and
rectification, which is another contribution we made. More specifically, it
is crucial to use our convolutional layer with subsequent average-pooling
(AP) and rectified linear units (ReLU) operations. We observed that ReLU
exploiting both positive and negative activations are particularly effective.

R2(x) =

(
max(0, x)

max(0,−x)

)
. (4)

Results and discussion

We tested our methods on two benchmarks, i.e., the STL-10 [2] and
MNIST [7] datasets (Figure 2). The experimental results revealed that
our convolution layer could reasonably improve the performance of the
original descriptors. Moreover, our method used together with appropri-
ate pooling methods and ReLU operations achieved remarkably high lev-
els of performance on both datasets that were comparable or better than
those of state-of-the-art networks.

Tables 1 and 2 summarize the scores of our method and those from
previous work for STL-10 and MNIST, respectively. We implemented K-
means features for STL-10 and random features for MNIST as the low-
level inputs of the networks. Our best model outperformed all previously
published scores in the literature. Superior results on STL-10 especially
indicated that our method could stably learn from a limited number of
training examples (100 per class). This is probably because our method

・
・
・

・
・
・

map 1

map 2

map km

Layer k Layer k+1

1+kmw

1w

2w

),(yx

map 1

map 2

map 1+km

Fisher weight map
or

Eigen weight map

−+

−

−−

)(
)1,1(

)(
)1,(

)(
)1,1(

k
yx

k
yx

k
yx

f

f

f

()yx ′′,

′′

)(
),(

k
yx

x

=

()1z

()2z

()
1+kmz

Figure 1: Convolution with weight map techniques.

Figure 2: Images from the STL-10 (top) and MNIST (bottom) datasets.

Table 1: Comparison of classification rates on STL-10 (%).
1-layer Vector Quantization [4] 54.9 ± 0.4
1-layer Sparse Coding [4] 59.0 ± 0.8
3-layer Learned Receptive Field [3] 60.1 ± 1.0
Discriminative Sum-Product Network [5] 62.3 ± 1.0
Ours, Km(9, 1000)-MP(8, 4)-CF(3, 100)-R2-AP(4, 3) 66.0 ± 0.7

Table 2: Comparison of classification errors on MNIST (%). We com-
pared our method with previous work using raw training dataset.

Large CNN (unsup. pretraining) [6] 0.53
3-layer CNN + Stochastic Pooling [9] 0.47
Multi-Column Deep Neural Network [1] 0.46∗

Ours, Rand(5, 1000)-R-AP(3, 2)-CF(3, 500)-R2-APq 0.44

is based on a simple eigenvalue problem and is capable of densely learn-
ing from high-dimensional descriptors without dropping connections be-
tween neurons.

[1] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks
for image classification. In Proc. IEEE CVPR, 2012.

[2] A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsu-
pervised feature learning. In Proc. AISTATS, 2011.

[3] A. Coates and A. Ng. Selecting receptive fields in deep networks. In Proc.
NIPS, 2011.

[4] A. Coates and A. Ng. The importance of encoding versus training with sparse
coding and vector quantization. In Proc. ICML, 2011.

[5] R. Gens and P. Domingos. Discriminative learning of sum-product networks.
In Proc. NIPS, 2012.

[6] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. Lecun. What is the best
multi-stage architecture for object recognition? In Proc. IEEE ICCV, 2009.

[7] Y. LeCun. The MNIST database of handwritten digits. URL http://yann.
lecun.com/exdb/mnist/.

[8] Y. Shinohara and N. Otsu. Facial expression recognition using Fisher weight
maps. In IEEE FG, pages 499–504, 2004.

[9] M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep
convolutional neural networks. In arXiv preprint, 2013.

