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Efficient two-step middle-level part feature extraction for

fine-grained visual categorization
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SUMMARY  Fine-grained visual categorization (FGVC) has drawn in-
creasing attention as an emerging research field in recent years. In contrast
to generic-domain visual recognition, FGVC is characterized by high intra-
class and subtle inter-class variations. To distinguish conceptually and vi-
sually similar categories, highly discriminative visual features must be ex-
tracted. Moreover, FGVC has highly specialized and task-specific nature.
It is not always easy to obtain a sufficiently large-scale training dataset.
Therefore, the key to success in practical FGVC systems is to efficiently
exploit discriminative features from a limited number of training examples.
In this paper, we propose an efficient two-step dimensionality compression
method to derive compact middle-level part-based features. To do this, we
compare both space-first and feature-first convolution schemes and investi-
gate their effectiveness. Our approach is based on simple linear algebra and
analytic solutions, and is highly scalable compared with the current one-
vs-one or one-vs-all approach, making it possible to quickly train middle-
level features from a number of pairwise part regions. We experimentally
show the effectiveness of our method using the standard Caltech—Birds and
Stanford—Cars datasets.

key words: Image Classification, Fine-grained Categorization, Part-based
features, Dimensionality Reduction

1. Introduction

While generic image classification techniques have been
steadily progressing, fine-grained visual categorization
(FGVCO) [1] has remained an open problem of increasing
interest. The objective of FGVC is to categorize concep-
tually (and thus visually) very similar classes (e.g., plant
and animal species) [2]-[4]. For example, Figure 1 (a)
shows images of birds all belonging to different classes. It is
very difficult, even for humans to correctly recognize these
species. Compared with generic image recognition, FGVC
is regarded as extremely difficult due to its high intra-class
and low inter-class variations [2] (Figure 1), and therefore it
requires new methods to capture subtle differences between
categories. In general, to distinguish very similar categories,
we need to extract highly informative visual features. Unlike
generic visual recognition, however, sufficient training data
are not always available for each specific application. This
problem makes it difficult to directly apply a deep neural
network [5], which is the current standard tool to extract dis-
criminative features in generic image recognition. In some
cases, deep convolutional neural networks (CNNs) substan-
tially outperform traditional pipelines by relying on pre-
trained networks on the ImageNet [6] and fine-tuning [7],
[8]. However, this does not always guarantee good perfor-
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Fig.1 Examples illustrating the difficulty of FGVC. (a) Subtle differ-
ences between categories. These birds all belong to different species. (b)
Huge intra-class variations caused by the individuality of each bird such as
viewpoint changes and occlusion. These birds are from the same class.

mance because the visual world of FGVC is often unique to
each application and not always covered by generic datasets
such as ImageNet.

At the same time, subordinate-level categories targeted
by FGVC often share some common “parts” that could pro-
vide a strong cue for recognition. For example, in Fig-
ure 1 (a), we can easily find differences if we look into the
detail of the head and wing parts, even if the global shape
and color of the four birds look very similar. Thus, extract-
ing discriminative information from parts is a key concept
of FGVC. Currently, part-based approaches constitute the
state-of-the-art methods.

Based on this observation, we propose an efficient dis-
criminative part-based feature extraction method. Specif-
ically, we investigate a two-step dimensionality reduction
strategy to derive discriminative middle-level part represen-
tation. To do this, we compare both space-first and feature-
first convolution schemes and show their mutual effective-
ness. Our approach is based on simple linear algebra and
analytic solutions, and is highly scalable compared with
the current one-vs-one or one-vs-all approaches to deriv-
ing middle-level features. In experiments, we evaluate our
method using the standard Caltech—Birds dataset [3].

2. Related work
2.1 Various approaches to FGVC
Many approaches to FGVC have been proposed. Some

early methods simply started with a well-established generic
approach (e.g., bag-of-visual-words [9], [10]) and achieved
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somewhat promising performance, considering the difficulty
of the problem [11], [12]. However, the generic approach is
intrinsically limited in that standard region features using
spatial pyramids [13] are not powerful enough to capture
discriminative image regions of fine-grained objects that are
often highly deformable and localized. Other methods have
focused on exploiting human interaction in both the training
and testing phases. For example, the Visipedia system [14]
uses human help in the manner of “20 questions,” gradually
specifying the visual characteristics of a query image that
are hard for a fully automatic system to identify. In the Bub-
bleBank system [15], crowdsourced humans point out dis-
criminative patches within an online game. These patches
are shown to substantially outperform traditional bottom-up
descriptors.

As for fully automatic recognition, the accurate
detection of object parts and their part-based features
have substantially improved FGVC performance [16]-[18].
Roughly, this approach consists of two processes: First,
parts are detected by trained part filters or object alignment
methods, and then visual features are specifically extracted
from each detected part. Although the part-based approach
is a common strategy for generic object recognition [19],
it is thought to be particularly important for FGVC. Target
categories in FGVC often share a common basic structure,
making part-wise comparison more reasonable. As a result,
many state-of-the-art methods use a part-based approach.

While both part detection and part-based feature ex-
traction steps are important, we specifically focus on the
feature extraction.

2.2 Part-based middle-level features

Describing objects with their part-based features is a
promising strategy for fine-grained recognition. However,
as typical objects have a number of parts, a naive con-
catenation of low-level features becomes extremely high-
dimensional and generally ineffective [17]. Therefore, it is
important to derive middle-level discriminative part features
with appropriate compression techniques. Part-based One-
vs-One Features (POOF) [17] builds support vector machine
(SVM) classifiers on top of low-level region features in a
one-vs-one manner for random combinations of parts and
classes to extract discriminative part features. Specifically,
each SVM classifier projects low-level features into a scalar
score of a binary classification, which is used as the middle-
level feature corresponding to the specific part and class
combination. This one-vs-one approach enables the min-
ing of subtle but discriminative visual features in each part
to describe the difference between very similar categories.
Similarly, [20] used a one-vs-all strategy for compressing
low-level part features.

3. Our approach

We assume that we have P types of parts and that the (x, y)
coordinates of the center of each part are manually anno-
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tated in training data. For testing, these coordinates are
estimated using appropriate part detection algorithms. An
overview of our method is illustrated in Figure 2. We first
extract some low-level visual features (base features) from
each local grid cell in the paired-parts regions, and then ap-
ply the proposed two-step discriminative dimensionality re-
duction to obtain a g-dimensional middle-level feature vec-
tor for each region. Finally, all middle-level features are
concatenated to represent the final feature vector for an im-
age. Because we use two different-sized grids for base fea-
tures, the dimensionality of the final image-level feature
vector is ¢ X pCy X 2 = P(P — 1)q. Finally, we train a multi-
class SVM classifier using the feature vector. We further
describe each step in the following sections.

3.1 Part detection and alignment

Using the part coordinates, we extract the same base fea-
tures using the same methodology as that of POOF [17] to
ensure a fair evaluation of the contribution of our middle-
level features.

For all part combinations i, j (i < j), we rotate and
scale a given image so that the two parts are horizontally
aligned with a horizontal spacing of 64 pixels. We then ex-
tract the 128 x 64 region that has the two points at its cen-
ter, which we call the paired-parts region (Figure 4). In this
way, we can normalize the orientation and scale of the local
image regions at many different levels with respect to part
combinations. While many methods just extract features
from the local regions corresponding to each part, POOF
improves performance by considering part combinations.
However, this also results in a large number of sub regions
(part-pairs) and requires an efficient dimensionality reduc-
tion scheme for processing the features of each part-pair.

3.2 Base feature extraction

From each paired-part region, we extract base features from
two grids of different cell sizes; 8 X 8 and 16 X 16. We
extract the following two features from each grid cell, fol-
lowing POOF.

1. Color histogram: We quantize the RGB-color space
into 32 clusters using standard K-Means, then extract
a 32-dimensional color histogram.

2. Histograms of Oriented Gradients (HOG): We use
the modified HOG in [19] that constitutes a 31-
dimensional feature vector for each grid cell.

For each parts-pair, extracted base features form a
three-dimensional tensor, as shown in Figure 3. Note that
our method is agnostic to the selection of base features and
methodology for specifying local regions.

3.3 Two-step dimensionality reduction of part features

Let Wx and Wy denote the number of grid cells along the
horizontal and vertical axes, respectively, and d denote the
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Fig.2  Our part-based feature extraction pipeline. Red squares represent the core module contributed
in this work, the detail of which is illustrated in Figure 3. (1) Extract a regularized sub-region for each
part combination provided by ground-truth annotation (training) or part detector (testing). (2) Extract
low-level features from grid cells in each sub-region, constituting a three-dimensional tensor. (3) Com-
press the tensors into a low-dimensional middle-level vector. (4) Concatenate all middle-level part
features into a final image feature vector.
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Fig.3  Two-step discriminative dimensionality reduction of low-level part features. (a) Space-first
dimensionality reduction. (b) Feature-first dimensionality reduction.



Fig.4  Extraction of paired-parts regions. The sub-region is rotated and
re-scaled so that part annotations are horizontally aligned with a specific
margin.

dimensionality of base features. Figure 3 illustrates our two-
step dimensionality reduction scheme. Instead of directly
compressing Wy Wyd-dimensional low-level descriptors, we
first reduce one matrix dimension along a space or feature
axis by means of a Fisher weight map (FWM). We denote
these operations as FWM,, and FWMy, respectively. After
applying FWM, the reduced matrix is vectorized and canon-
ical correlation analysis (CCA) is used to further reduce the
dimension of the final feature vector using discriminative
criteria. Our approach is closely related to bilinear dimen-
sionality reduction methods such as 2D-LDA [21] and 2D-
CCA [22]. A notable advantage of our method is that it is
a deterministic method and no iterative optimization is re-
quired. This property enables extremely fast learning and
ensures that the solution is not affected by initialization.

With regard to the feature-first dimensionality reduc-
tion (FWMy), we include local convolution and pooling op-
erations in the architecture. Namely, we stack 3 X 3 neigh-
boring grid features before applying FWM. Further, we ap-
ply 2 X 2 spatial average pooling after FWM to reduce the
number of features, making the successive CCA operation
more efficient.

We let G € RP*P2 denote an input matrix for FWM.
In the following derivation, we assume that the row di-
rection is the first dimension to be compressed by FWM.
Namely, we reshape an input feature tensor F € RWx*Wrxd
into G € RYxWrd for FWM,, and G € R*®WxWr (with
stacking) for FWM;,. Applying FWM, we obtain a projec-
tion matrix W € R to extract the reduced feature matrix
H e RPP2 where H = W' (G - G) (G is the average of G).

Fisher weight map (FWM)

The FWM was originally proposed by Shinohara and Otsu
[23] " for computing spatial weights for individual pixels in
images, and has the roots in Eigenface [25] and Fisherface
[26]. While Eigenface and Fisherface simply perform prin-
cipal component analysis (PCA) or Fisher linear discrimi-
nant analysis (FLDA), respectively, on image vectors, FWM
is designed for a two-dimensional (matrix) representation,
where each pixel has multiple feature channels.

For the formulation of FWM, let & denote a row vec-
tor of H corresponding to a single feature map w, i.e.,
h = w' (G — G). FWM computes the projections that max-

Li et al.also proposed essentially the same method in 2005
[24].
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imize the Fisher’s discriminant criterion of &, which can be
obtained as the top eigenvectors of the following generalized
eigenvalue problem.

Tpw = Zyw @ Tyw = 1), (1)
where
1 Nj ) )
Ty = I Z Z(GEJ) _ G”’)(Gﬁ” _ Gy, 2
j=1 =1
1S o ey -
%=y NG -GG -G 3)

J=1

C is the number of classes, N; is the number of training
samples in class j, GEJ) is the i-th training sample of class

j, and G is the class mean.

Using the top p eigenvectors with the largest eigen-
values, we compose the discriminative projection matrix
W= (w1 wy - w,,) for the first dimensionality reduction.

Canonical Correlation Analysis (CCA)

After the first compression via FWM, we vectorize the re-
sultant matrices and apply CCA [27] to further reduce the
dimensionality. We let x € RPP> denote a vectorized (or
rastered) representation of H € RPP2. In addition, we let
y € RC denote its corresponding label vector, which is a
one-of-K representation of the category label. Mathemati-
cally, CCA is exactly equivalent to FLDA when applied to
categorization problems. One advantage of implementing
CCA is that it can be easily extended to multi-label prob-
lems.

CCA finds the linear projections s = a’x and 1 = b’y
that maximize the correlation between the projected vari-
ables s and t. We let X = (Z” z:x”) denote their covariance

Ty Ly
matrices. The CCA solution is obtained by solving the fol-
lowing eigenvalue problem.

TS, Spa = VIga (@' Sua=1), )

Using the top g eigenvectors for projection, we get a final
part feature vector z = A7 (x—%), where A = (a1 a --- aq).

Analysis

We compare the computational complexity of our method,
PCA (CCA), POOF, and one-vs-all methods with respect
to the training and extracting mid-level features. For sim-
plicity, we only describe FWM,, method but the same
discussion holds for FWM/;. The core idea of our ap-
proach is to decompose WxWyd-dimensional eigenvalue
problem of PCA (or CCA) into WxWy-dimensional one
(first step by FWM) and pd-dimensional one (second step
by CCA). This approach can significantly reduce the cost
from O ((WxWyd)?) to O((WxWy)? + (pd)*) because we
can set p << WxWy in general. The role of FWM is to
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Fig.5 Effect of two-step discriminative dimensionality reduction on
low-level part features, shown together with PCA and CCA baselines. The
value of g, i.e., the dimensionality of a feature vector describing one part
(Fig. 2), corresponds to the horizontal axes of the graphs. Top row: HOG.
Bottom row: color histogram. Left column: Space-first dimensionality re-
duction. Right column: Feature-first dimensionality reduction.

roughly select pd important features so that the successive
CCA is as small-dimensional as possible. Then the CCA
can find final mid-level features at low cost. Also, assum-
ing that each class has roughly the same number of training
samples, our method should scale linearly to the number of
classes C. Thus, our method is quite scalable compared to
one-vs-all [20] and POOF [17].

As for the performance of final mid-level features, in
order to get reliable performance in one-vs-one approach
by POOF, we should extract all P(P — 1)C(C — 1) combi-
nations of parts and classes. However, this is intractable
when the number of classes C gets larger. In practice, less
than 1% of them are randomly sampled to make the prob-
lem feasible. More or less, the same sparseness problem
is inevitable in one-vs-all approach. Unlike one-vs-one or
one-vs-all, our method is based on global discriminative cri-
terion (i.e., Fisher discriminant criterion) which is suitable
for extracting most discriminative features regardless of the
number of classes.

4. Experiments on bird species recognition

We used the Caltech-UCSD Birds-200-2011 dataset [3] for
evaluation. The dataset consists of 200 bird species, and
is currently one of the most widely used benchmarks for
FGVC problems. The dataset consists of 5,994 training and
5,794 test images (11,788 in total). Each image has the
ground-truth annotations of a bounding box and 15 parts.
In this experiment, we tackle the “localized species cat-
egorization” benchmark, where the ground-truth bounding
box may be used for both the training and testing phases [3].
Generally, classification performance is strongly affected by
two components: the part estimation algorithm and part-
based features. We evaluate our model under two scenarios
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Fig.6  Comparison of actual training time. Time for low-level feature
extraction and training final SVM classifiers are not included.

to separately measure the individual factors. First, we use
the ground-truth part locations in the test images to compare
the pure performance of part-based features. The evaluation
with ground-truth part locations will measure the effective-
ness of the proposed feature representation under the iso-
lation of other factors. Second, we combine our part-based
features with an off-the-shelf part estimation method to eval-
uate the final testing performance without ground-truth part
annotations.

All experiments were conducted on a workstation with
two 8-core Xeon 2.60 GHz CPUs and 128 GB memory.

4.1 Dataset pre-processing

Caltech-UCSD Birds-200-2011 has annotations for the posi-
tions of 15 parts (back, beak, belly, breast, crown, forehead,
left eye, left leg, left wing, nape, right eye, right leg, right
wing, tail, and throat) . Following the POOF methodology,
and using the symmetric nature of the target (i.e., bird), we
reduced the complexity of the problem as follows. We hor-
izontally reflect all images in which “right eye” is visible
but “left eye” is not, and change parts “right eye/leg/wing”
to “left eye/leg/wing,” respectively. The part coordinates
are reflected accordingly. Assuming that all targets now
face leftward, we disregard the “right eye/leg/wing”” parts,
which should now be occluded, and consider the remaining
12 parts in our experiments.

Although the number of original images in this dataset
is not too large, remember that we consider all pC, com-
binations of parts (1,C, = 66 in our case). Each of them
comprises 4,000-6,000 normalized (128 x 64) local images
from which we extract base features of two grid sizes and
train middle-level representation. In our implementation,
we processed 1.3 million local images in total for part fea-
ture extraction, which is computationally intractable for un-
scalable methods.

"Note that not all parts are always visible in each image. We
fill in missing parts with the average vector for that part.
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Table 1  Comparison of computational complexity for extracting mid-level part features. Time for
low-level feature extraction and training final SVM classifiers are not included.
| Proposed (FWM,,) [ PCA (CCA) [ POOF[17] [ OvA[20] |
Training O (P> (N(WxWy)2d + (pd)>) + (WxWy)? + (pd)®)) | O(P2 (N(WxWyd)* + (WxWyd)®)) | OWNP2C2WxWyd) | O(NP2CWxWyd)
Projection O(P*WxWyd) O(P*Wx Wyd) O(P*C*WxWyd) O(P*CWxWyd)

Table 2

Detailed computation time for each step in training (s). Time for low-level feature extraction
is not considered.

l

[ FWM [ CCA | SVM [ Total [

#dim [ Acc. (%) ]

FWM,,(10)-CCA(18)
FWM (15)-CCA(18)
FWM,,(1)
FWM,,(5)
FWM,,(10)

FWM (1)

FWM;(5)

FWM(10)

CCA(18)

30
273
57
190
369
301
471
681
N/A

32
31
N/A
N/A
N/A
N/A
N/A
N/A
3084

213
214
946
2481
3776
482
1770
3255
178

275 4752
518 4752
1003 8316
2681 41580
4145 83160
783 21120
2241 105600
3966 || 211200
3262 4752

75.96
75.27
62.11
71.53
72.64
61.77
70.78
72.59
71.90

Table 3

Classification accuracy (%) using different low-level features and compression models, to-
gether with the dimensions of final image-level representations. We set ¢ = 18 (denoted as CCA(18))
except for (a5), (bS) and (c4) where we use ¢ = 36 for only Opponent-SIFT.

Compression Model No. Color Hist. HOG  Opp.-SIFT | #dim | Acc.(%)
FWM;,(10)-CCA(18) (al) v 2376 63.51
(a2) v 2376 65.17
(a3) v v 4752 75.96
(ad) v v v 7128 80.76
(a5) v v v 9504 82.11
FWM,(15)-CCA(18) (bl) v 2376 64.41
(b2) v 2376 64.60
(b3) v v 4752 75.27
(b4) v v v 7128 79.77
(b5) v v v 9504 80.43
Combination (al)+(bl) | (cl) v 4752 65.96
(Late fusion) (a2)+(b2) | (c2) v 4752 66.02
(a3)+(b3) | (c3) v v 9504 76.39
(aS)+(b5) | (c4) v v v 19008 82.15
POOF [17] (d1) v v 5000 73.30
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4.2 In-depth study using ground-truth part annotations

First, we used color histograms and HOGs as the base
low-level features to demonstrate the effectiveness of our
method and fairly compare it with POOF. Figures 5 plots
the classification performance, reducing the compression
dimensions ¢ for HOG and color histograms. The nota-
tion FWM(p) — CCA(g) indicates that the input feature ma-
trix is first compressed into p X D, dimensions by FWM
and successively compressed into a g-dimensional vector
by CCA (see Sect. 3.3). We also plot the scores for PCA
and CCA using vectorized raw features directly as the base-
lines. Both FWM;, and FWM; consistently improve per-
formance with respect to PCA and CCA. In theory, direct
CCA might seem more reasonable considering that it natu-
rally includes our two-step linear decomposition. However,
this method solves considerably high-dimensional learning
problems with a limited amount of training samples, making
it difficult to prevent overfitting.

Table 3 summarizes the performance of our method
with various low-level features.  Here, we also test
Opponent-SIFT [28]. We densely sample the descriptors
with exactly the same grid parameters as the others. When
using multiple features, we individually fit the compression
model for each feature and then concatenate all image-level
features.

Comparing (a3) and (b3) with (d1) demonstrates the
advantage of our methods over POOF. Using exactly the
same low-level features and approximately the same dimen-
sions of the final image feature vector, both our methods
outperform POOF. This result clearly indicates the effective-
ness of our mid-level feature representation. In addition, we
observe that adding Opponent-SIFT features can further im-
prove performance by a large margin. As for the comparison
of (a) space-first and (b) feature-first models, we found that
the former tends to perform better, although the difference is
subtle. However, we observe that (c) using both of them by
means of late fusion (i.e., taking the average of the classifier
scores) further improves classification accuracy. This result
suggests that two models may exploit mutually different sta-
tistical properties of raw features.

Next, we report the computation time of our method
for training (i.e., building the system from 1.3M local part
images). To compare our two-step method with baseline
one-step approach, we summarize the detailed computation
time for each step in training at Table 2, together with the
dimensionality of final feature vector and classification ac-
curacy. We omits the time for low-level feature extraction
because this is common for all methods.

As we have discussed in Section 3.3, our two-step ap-
proach significantly reduces the total training time while
keeping the classification accuracy. Just applying FWM
ends in pD, features per part and does not drastically com-
press the dimensionality of the final feature vector for an
image. Although the accuracy increases as p gets larger,
training time for SVM classifiers becomes prohibitive. Also,

Table 4  Comparison of classification accuracy when ground-truth part
annotations are used for testing. Methods marked by (*) use deep learning
with external training data.

[ Method [ Acc. (%) |
Ours (Color + HOG, Tab. 3 (c3)) 76.39
Ours (Color + HOG + Opp.-SIFT, Tab. 3 (c4)) | 82.15
POOF [17] 73.30
HPM [30] 66.35
OVA(*) [20] 81.2
R-CNN(*) [7] 82.02
PN-CNN(*) [8] 85.4

while directly applying CCA can compress the features like
two-step methods, it needs to solve WxWyd-dimensional
eigenvalue problem, resulting in long computation time for
CCA. Thus, FWM and CCA in the two-step pipeline are mu-
tually helpful to compress low-level features while keeping
the cost for solving eigenvalue problems low. Our method
enables fast training of discriminative middle-level repre-
sentations.

We also evaluated the scalability in terms of the num-
ber of classes. Figure 6 summarizes the result. As we have
described in Table 1, our method should scale linearly to the
number of classes, considering that each class has roughly
the same number of samples. On the other hand, POOF
quickly becomes intractable as the number of classes grows.
Although we can cap the number of features by random
sampling (dashed line shows when capped at 5,000) as in
[17], this will lead to significant loss of performance be-
cause the sampled features may become extremely sparse
when the number of classes is large.

Finally, we summarize the results of our method and
previous work in Table 4. Notation (*) indicates that the
method requires external training data (ImageNet) to train
(or pre-train) deep CNNs. Starting from off-the-shelf low-
level descriptors, our method achieves promising perfor-
mance well comparable with those using fine-tuned CNNSs.

4.3 Classification performance including part estimation

We next evaluate the final performance of our method, in-
cluding the estimation of part locations. Because part local-
ization is not the main interest of this study, but code for the
part detection employed in POOF is not publicly available,
we use the very simple but efficient method of Nonparamet-
ric Part Transfer (NPT) [29]. NPT simply transfers the part
locations of the nearest neighbors of the input query in terms
of the global HOG descriptor, as follows.

1. Augment the training dataset by including horizontally
reflected images . Part locations (and types) are ac-
cordingly reflected.

2. For a test image, retrieve the k nearest neighbors in
terms of HOG-space distance and impose each of their
part locations.

"Note that augmenting the dataset by adding horizontally re-
flected images is a common practice, e.g., in [31], [32].



3. Using the transferred part annotations, extract part-
based features and conduct classification.

4. Final classification is decided by means of the late fu-
sion of classification scores corresponding to k neigh-
bors.

Table 5 summarizes the results when ground-truth part
locations are unknown. In addition to our methods and pre-
vious work, we also report the scores using the Fisher vector
[10] with the Opponent-SIFT descriptor. To implement the
Fisher vector, we densely sampled the descriptors from 24 x
24 patches at every three pixels on a grid, and encoded them
using a Gaussian mixture model with 64 components. We
extracted features from four regions: the entire image and
three horizontal bins. Model (al) in Table 5 corresponds to
the standard implementation. In addition, we also extracted
features and trained a classifier from the segmented images
using GrabCut [33], combining it with (al) by means of late
fusion, which we denote by (a2). These baseline models
were trained on the dataset augmented by reflection.

Our method with NPT part estimation (b2) achieves
47.31%. This is relatively poor compared with the original
score of 56.78% reported in POOF. The difference in per-
formance may be attributed to the choice of part estimation
method. However, late fusion with the global Fisher vec-
tor model (a2) greatly improves the performance to 64.08%
(b3), which is state-of-the-art among those methods not us-
ing CNNs (and external training data). Using a more pow-
erful part localization method could further improve perfor-
mance.

5. Experiments on car type recognition

We also evaluated our method on the Stanford Cars-196
dataset [35] covering 196 fine-grained car types. The dataset
contains 8,144 training and 8,041 test images specified by
the authors.

Basically, our method assumes ground-truth annota-
tions of part locations for training. However, this dataset
has only bounding box information and does not have part
annotations. Therefore, we use the deformable part model
(DPM) [19] to automatically estimate parts both for train-
ing and testing images. We use the car model pre-trained
on the VOC2007 dataset provided by the authors™. Unlike
in the experiment on the Birds-dataset, we do not perform
any preprocessing like section 4.1. Also, instead of NPT,
we directly use the part locations estimated by DPM for the
testing phase.

We summarize the classification accuracies of our
methods and previous ones in Table 6. As the global fea-
ture baseline, we found that the SIFT-based Fisher vector
achieves the best (71.0%). Adding our mid-level part fea-
tures by late fusion can improve 1.6%, despite that both
of them use exactly the same local descriptors (i.e., dense
SIFT). Moreover, adding more descriptors for computing

*http://www.cs.berkeley,edu/ rbg/latent/
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part features can further improve the performance and ob-
tained 73.8% accuracy. This is close to ELLF [36], the cur-
rent best result using no external training data. Considering
that ELLF depends on a well-tuned CNN with significant
data augmentation, our result is quite satisfactory. Thus, we
conclude that our method is also effective for car type recog-
nition.

6. Conclusion

In this study, we tackled the problem of fine-grained vi-
sual categorization. The key to success in the part-based
approach is to derive discriminative and compact middle-
level representation of part features. The core contribution
of our work is the efficient learning of middle-level features
using a two-step dimensionality reduction scheme. In con-
trast to one-vs-one or one-vs-all alternatives, our method is
based on analytic and deterministic solutions using global
cost functions, which are scalable in terms of the number
of classes. Moreover, the two-step decomposition reduces
the dimension of eigenvalue problems and thus enables ex-
tremely fast training. Although this family of methods is
widely studied in the face-recognition domain, we found
these properties are quite beneficial for FGVC problems
where we need to handle a number of classes and part re-
gions.

In experiments using the standard Caltech-Birds and
Stanford-Cars dataset, we confirmed that our middle-level
features substantially outperform the POOF baseline, de-
spite their simplicity. Moreover, used together with off-the-
shelf part detection methods, our approach achieved similar
or better results than previous state-of-the-art methods that
do not use external data for deep learning.

Acknowledgments

This work was supported by JST CREST, JSPS KAKENHI
Grant Number 26730085 and the Kayamori Foundation of
Informational Science Advancement.

References

[1] 1. Biederman, S. Subramaniam, and M. Bar, “Subordinate-level
object classification reexamined,” Psychological Research, vol.62,
pp-131-153, 1999.

[2] J.Deng, A. Berg, K. Li, and L. Fei-Fei, “What does classifying more
than 10,000 image categories tell us?,” Proc. ECCV, pp.71-84, 2010.

[3] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” tech. rep., California In-
stitute of Technology, 2011.

[4] M.E. Nilsback and A. Zisserman, “Automated flower classification
over a large number of classes,” Proc. Indian Conference on Com-
puter Vision, Graphics & Image Processing, pp.722-729, Ieee, Dec.
2008.

[S] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” Proc. NIPS, 2012.

[6] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. Fei-Fei, “Im-
ageNet: A large-scale hierarchical image database,” Proc. CVPR,
pp-2-9, 2009.



NAKAYAMA and TSUDA: EFFICIENT TWO-STEP MIDDLE-LEVEL PART FEATURE EXTRACTION FOR FINE-GRAINED VISUAL CATEGORIZATION

Table 5  Comparison of classification accuracy including automatic part detection. Methods marked
by (*) use deep learning with external training data.

Method [ No. “ Part detection Base part/region features [ Obj.-level features [ Acc. (%) ]
Baseline (al) - - Opp.-SIFT FV 514
(a2) - - Opp.-SIFT FV 56.2
(Raw + GrabCut)
Ours (bl) NPT Color hist + HOG - 42.42
(b2) || NPT Color hist + HOG + Opp.-SIFT | - 47.31
(b3) || NPT Color hist + HOG + Opp.-SIFT | Opp.-SIFT FV 64.08
(Raw + GrabCut)
POOF [17] (cl) Exemplars Color hist + HOG - 56.78
NPT [29] (c2) NPT Color name BoW + Opp.-SIFT BoW 57.84
DPD [18] (c3) DPM Kernel descriptor BoW 50.98
HPM [30] (c4) DPM + GrabCut Opp.-SIFT LLC 59.86
Symbiotic [32] (c5) DPM + GrabCut SIFT FV + Color hist LLC 59.40
Alignment [31] | (c6) || Unsup. alignment Opp.-SIFT FV 62.70
DeCAF(*) [34] | (d1) || DPM CNN 64.96
OvA(*) [20] (d2) || DPM + GrabCut CNN + SIFT FV + Color LLC [ - 67.6
R-CNN(*) [7] (d3) Region proposal CNN 76.37
PN-CNN(*) [8] | (d4) Pose normalization | CNN 75.7

Table 6

Comparison of classification accuracy on the Stanford Cars-196 dataset.

bounding box annotations are used both for training and testing.

[ Method [ Acc. (%) ]
FV (SIFT) 71.0
Ours (SIFT) + FV (SIFT) 72.6
Ours (Color, HOG, Opp.-SIFT, SIFT) + FV (SIFT) | 73.8
BB [15] 63.6
BB-3D-G [35] 67.6
LLC (SIFT) [37] 69.5
CNN [36] 70.5
ELLF [36] 73.9

Ground-truth




10

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based R-
CNNss for Fine-grained Category Detection,” Proc. ECCYV, 2014.

S. Branson, G. Van Horn, S. Belongie, and P. Perona, “Bird Species
Categorization Using Pose Normalized Deep Convolutional Nets,”
Proc. BMVC, 2014.

G. Csurka, C.R. Dance, L. Fan, J. Willamowski, and C. Bray, “Vi-
sual categorization with bags of keypoints,” Proc. ECCV Workshop
on Statistical Learning in Computer Vision, 2004.

F. Perronnin, J. Sdnchez, and T. Mensink, “Improving the Fisher
kernel for large-scale image classification,” Proc. ECCV, 2010.

J. Lin and T.G. Dietterich, “Is Fine Grained Classification Different
?,” CVPR workshop on FGVC, 2013.

Ph. Gosselin, N. Murray, H. Jégou, and F. Perronnin, “Revisiting
the Fisher vector for fine-grained classification,” Pattern Recognition
Letters, vol.11, no.49, pp.92-98, 2014.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,”
Proc. IEEE CVPR, 2006.

S. Branson, C. Wah, and F. Schroft, “Visual recognition with humans
in the loop,” Proc. ECCV, 2010.

J. Deng, J. Krause, and L. Fei-Fei, “Fine-Grained Crowdsourcing
for Fine-Grained Recognition,” Proc. IEEE CVPR, 2013.

N. Zhang, R. Farrell, and T. Darrell, “Pose Pooling Kernels for Sub-
category Recognition,” Proc. IEEE CVPR, 2012.

T. Berg and PN. Belhumeur, “POOF: Part-based one-vs.-one fea-
tures for fine-grained categorization, face verification, and attribute
estimation,” Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp.955-962, 2013.
N. Zhang, R. Farrell, F. Iandola, and T. Darrell, “Deformable Part
Descriptors for Fine-Grained Recognition and Attribute Prediction,”
Proc. IEEE ICCV, 2013.

P.E. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan,
“Object Detection with Discriminative Trained Part Based Models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol.32, pp.1627-1645, 2010.

X. Zhang, H. Xiong, W. Zhou, and Q. Tian, “Fused One-vs-All Mid-
Level Features for Fine-Grained Visual Categorization,” Proc. ACM
Multimedia, 2014.

J. Ye, R. Janardan, and Q. Li, “Two-Dimensional Linear Discrimi-
nant Analysis,” Proc. NIPS, 2004.

S.H. Lee and S. Choi, “Two-Dimensional Canonical Correlation
Analysis,” IEEE Signal Processing Letters, vol.14, no.10, pp.735-
738, 2007.

Y. Shinohara and N. Otsu, “Facial expression recognition using
Fisher weight maps,” IEEE FG, 2004.

M. Li and B. Yuan, “2D-LDA: A statistical linear discriminant anal-
ysis for image matrix,” Pattern Recognition Letters, vol.26, no.5,
pp-527-532, 2005.

M. Turk and A. Pentland, “Face recognition using eigenfaces,” Proc.
IEEE CVPR, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection,” IEEE
Trans. PAMI, vol.19, no.7, pp.711-720, 1997.

H. Hotelling, “Relations between two sets of variants,” Biometrika,
vol.28, pp.321-377, 1936.

K.E.a. van de Sande, T. Gevers, and C.G.M. Snoek, “Evaluating
color descriptors for object and scene recognition,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.32, no.9,
pp-1582-96, Sept. 2010.

G. Christoph, E. Rodner, A. Freytag, and J. Denzler, “Nonparamet-
ric Part Transfer for Fine-grained Recognition,” Proc. IEEE CVPR,
2014.

L. Xie, Q. Tian, R. Hong, S. Yan, and B. Zhang, “Hierarchical
part matching for fine-grained visual categorization,” IEEE ICCYV,
pp.1641-1648, 2013.

E. Gavves, B. Fernando, C. Snoek, A. Smeulders, and T. Tuytelaars,
“Fine-Grained Categorization by Alignments,” Proc. IEEE ICCYV,

[32]

[33]

[34]

[35]

[36]

[37]

IEICE TRANS. ??, VOL.Exx—??, NO.xx XXXX 200x

2013.

Y. Chai, V. Lempitsky, and A. Zisserman, “Symbiotic Segmentation
and Part Localization for Fine-Grained Categorization,” Proc. IEEE
ICCV, 2013.

C. Rother, V. Kolmogorov, and A. Blake, “”’GrabCut” - Interactive
foreground extraction using iterated graph cuts,” ACM Transactions
on Graphics (SIGGRAPH), 2004.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition,” Proc. ICML, 2014.

J. Krause, M. Stark, J. Deng, and L. Fei-fei, “3D Object Representa-
tions for Fine-Grained Categorization,” IEEE Workshop on 3D Rep-
resentation and Recognition, 2013.

J. Krause, T. Gebru, J. Deng, L.J. Li, and FF. Li, “Learning Features
and Parts for Fine-Grained Recognition,” Proc. ICPR, 2014.

J. Wang, J. Yang, K. Yu, F. Lv, T.S. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” Proc. IEEE
CVPR, pp.3360-3367, leee, June 2010.

Hideki Nakayama received the M.S. and
Ph.D degrees in information science from the
University of Tokyo in 2008 and 2011, respec-
tively. He was a Research Fellow of the Japan
Society for the Promotion of Science (DCI1)
from 2008 to 2011. He is currently a full-
time senior assistant professor at the Graduate
School of Information Science and Technology,
The University of Tokyo. His research interests
include generic object and image recognition,

multimedia analysis, natural language process-

ing and deep learning.

Tomoya Tsuda received his M.S. degree
in information science from the University of
Tokyo in 2015. His research interests include
image classification and machine learning. He
is currently at Shimadzu Corporation.




