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ABSTRACT

Fine-grained visual categorization (FGVC), which is a rela-
tively new research area, distinguishes conceptually and vi-
sually similar categories such as plant and animal species.
While FGVC is expected to lead to many task-specific practi-
cal applications, it is known as an extremely difficult problem
because interclass variations are often quite subtle.

We believe that the key to FGVC is improving local de-
scriptors to enhance discriminative power at the local patch-
level. While the pooling strategy of descriptors has been in-
tensively improved for bag-of-visual-words (BoVW) based
image representations, the descriptors themselves are often
untouched. In this paper, we propose a descriptor augmen-
tation method that utilizes polynomial embedding and su-
pervised dimensionality reduction. Since our method pro-
vides moderate-sized compressed descriptors, it can be nat-
urally integrated with off-the-shelf BoVW techniques. In ex-
periments, we show that our method achieves state-of-the-art
performance on standard FGVC datasets, Caltech-Birds, and
Oxford-Flowers.

Index Terms— Fine-grained Visual Categorization, Lo-
cal Descriptors, Polynomial Embedding, Bag-of-Visual-
Words, Fisher Vector

1. INTRODUCTION

Recently, generic image classification techniques have been
making steady progress. Among them, fine-grained visual
categorization (FGVC) [1] is now thought to be a promising
new framework. The goal of FGVC is to categorize concep-
tually (and thus visually) similar classes such as plant andan-
imal species [2, 3, 4, 5]. Such a technique would give rise to
many practical applications such as bird-watching assistance
and online plant identification [6]. However, it is regardedto
be extremely difficult because of its high intra-class and low
inter-class variations [2].

To distinguish very similar categories, we need to extract
highly informative visual features. We believe that the keyto
achieving this is to enhance the discriminative power of local
descriptors. Hitherto, while the pooling strategy of descrip-
tors has been well studied [7, 8, 9] for bag-of-visual-words
(BoVW) [10] based methods, descriptors themselves are of-
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Fig. 1. An illustration of a case of using FGVC techniques
(Bird-watching). Users would indicate target objects using
tablet interfaces.

ten untouched, using standard, expert-provided ones (such
as the SIFT [11]) as “given”. Although some techniques to
augment descriptors have been proposed for image matching
and registration [12, 13, 14], this point has been largely over-
looked in the context of image categorization problems.

In this paper, we show that we can efficiently improve the
discriminative performance of arbitrary local descriptors for
BoVW-based systems with a simple supervised dimension-
ality reduction method. Using polynomials of a descriptor
and its neighbors, we can efficiently exploit local spatial co-
occurrence patterns. Our method is motivated by the recent
success of descriptor learning in image matching, wherein
descriptors are trained in a supervised learning framework.
Although our approach is based on a strong assumption that
every patch in an image is somewhat related to its category,
this is reasonable for FGVC problems considering its applica-
tions. Unlike in a generic image categorization setup, human
users do not know what the image content is (e.g., species of
birds), and actively want to know it. In such a case, it is rea-
sonable to expect users to provide a bounding box or a mask
(Fig. 1).

With this in mind, we perform extensive experiments us-
ing the challenging FGVC datasets. Our descriptor augmen-
tation method can dramatically improve the classification per-
formance of BoVW-based image representations. Moreover,
when used with the state-of-the-art Fisher vector coding [8],
it outperforms the current best performing methods.



2. RELATED WORK

Our method for augmenting descriptors essentially consists
of two ideas: exploiting local spatial information, and super-
vised discriminative dimensionality reduction. Here, we sum-
marize related work respectively.

2.1. Local Spatial Information

Local spatial information, i.e., the local arrangement of neigh-
boring descriptors, has been shown to have rich discrimina-
tive power. The standard approach for exploiting such infor-
mation is descriptor coupling [15, 16]. These methods pair
descriptors in the visual word space, where each descriptoris
assigned one visual word as in the usual BoVW approach, and
the pairwise histogram is used as an image signature. How-
ever, the number of histogram bins can be quite large when
a large number of visual words are used. On the other hand,
Morioka et al. proposed a pairing method in the descriptor
space by concatenating spatially neighboring descriptorsinto
one long descriptor [17, 18]. However, since the dimension
of concatenated descriptors becomes large as the number of
included neighbors increases, the computational complexity
for coding image signatures also becomes high.

Haradaet al. included local spatial information by sim-
ply using the correlation of elements of neighboring local de-
scriptors [19, 20]. Despite its simplicity, their method showed
good performance for image classification problems. How-
ever, this method is not designed for BoVW-based feature
representations. Motivated by their idea, in this study, weex-
ploit polynomials of neighboring descriptors to encode local
spatial information in BoVW-based approaches.

2.2. Discriminative Dimensionality Reduction

Reducing the dimensionality of descriptors has been an at-
tractive topic within the image matching and retrieval com-
munity. Recent studies have aimed at learning compact binary
descriptors that are computationally quite efficient in terms of
both calculation and storage use [12, 21, 22, 23]. Although
binarization (hashing) is beyond the scope of this paper, we
also apply dimensionality reduction methods to raw descrip-
tors.

Many methods have been proposed for this task, both in
unsupervised and supervised approaches. We focus on super-
vised methods, which we anticipated to be the key to improv-
ing system performance. The method proposed by Brown
et al. [14] appears to be the closest to ours, wherein linear
discriminant analysis is used for compressing local descrip-
tors. The objective of their work was descriptor-level image
matching. Therefore, each descriptor in the training dataset is
assigned labels (true match or not). LDAHash [13] and [12]
extends this idea to learn compact binary codes. In this paper,
we follow the same strategy in the context of generic image
categorization. We apply a simple linear dimensionality re-
duction method to descriptors using image-level labels.

3. OUR APPROACH

3.1. Augmented Descriptor

We densely extract local featuresv ∈ Rd from images. Each
patch at position(x, y) is described byv(x,y). We augment
this by explicitly including the polynomials1 of its elements.
Let pc

(x,y) denote the augmented descriptor, wherec is the
number of neighbors considered. When no neighbor is con-
sidered,
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whereupperV ec() is the flattened vector of the components
in the upper triangular part of a symmetric matrix.

Moreover, we can efficiently exploit local spatial informa-
tion by taking the polynomials between neighboring descrip-
tors. When considering two neighbors as shown in Fig. 2 (a),
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whereV ec() is the flattened vector of the components of a
matrix, andδ is an offset parameter for defining neighbors.
Similarly, when considering four-neighbors (Fig. 2 (b)),
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3.2. Label Vector

Our label vector is quite simple; if the image has the labelwi,
the i-th element of the labels feature is one; otherwise, it is
zero. Therefore, for categorization problems, the dimension
of the label vector is the number of categories. Only one ele-
ment that corresponds to the image’s category is one; all other
elements are zero2.

1We use at most the second-order polynomials in this paper considering
the computational cost, although our framework supports higher-order ones.

2This label vector could be naturally used for multi-label problems, al-
though this is beyond the scope of this paper.
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Fig. 2. Models for spatial embedding. Star mark and circles
represent the target local descriptor and its neighbors, respec-
tively.

In this paper, we use this image-level label vector for de-
scriptor compression. That is, allp within an image are cou-
pled with the same label vector for supervised dimensionality
reduction. Obviously, this is a rather rough approach, since
not all local features within an image are actually related to
the image-level labels. Nevertheless, we note that this as-
sumption is justified somewhat for FGVC problems, as dis-
cussed in the introduction.

3.3. Supervised Dimensionality Reduction

We apply canonical correlation analysis (CCA) [24] to the
pairs of the augmented descriptorp and label vectorl. CCA
finds the linear projectionss = AT p and t = BT l that
maximize the correlation between the projected vectorss and
t. We randomly sample{p(x,y), l(x,y)} pairs from the entire

training dataset, and letC =

(

Cpp Cpl

Clp Cll

)

denote their covari-

ance matrices. Namely,

Cpp =
1

N

∑

(p − p̄)(p − p̄)T , (4)

Cll =
1

N

∑

(l − l̄)(l − l̄)T , (5)

Cpl =
1

N

∑

(p − p̄)(l − l̄)T , (6)

Clp = CT
pl, (7)

whereN is the number of sampled pairs, andp̄ andl̄ are their
means. The solution of CCA can be obtained by solving the
following eigenvalue problem.

CplC
−1
ll ClpA = CppAΛ2 (AT CppA = Im), (8)

whereΛ is the diagonal matrix of the firstm canonical cor-
relations, andm is the dimension of the canonical elements.
The parameterm corresponds to the dimension of the embed-
ded descriptor, and needs to be tuned manually. One problem
is thatm can be at most the dimension of the label vector be-
cause of the rank problem. If we need more features, we can

projectp into the orthogonal subspace and iteratively apply
CCA to further extract discriminative components.

Using the projections obtained by CCA, we get a compact
vectors that embeds a high-dimensional augmented vector,
which we call the latent descriptor.

s = AT p. (9)

Once the latent descriptor is computed, it can be used in
the exact same manner as widely-used raw descriptors such
as SIFT.

4. EXPERIMENT

4.1. Image Features and Classifiers

We use several standard local descriptors to test our method,
such as SIFT [11], C-SIFT [25], opponent-SIFT [26], and
the self-similarity descriptor [27]. The dimension of the self-
similarity descriptor is 40 in our experiments (4 radial bins
and 10 angle bins). All these local features are extracted in
a dense sampling approach. We extract local features from
24x24 patches on regular grids spacing five pixels. These de-
scriptors are compressed into 64 dimensions via PCA, except
for the self-similarity descriptor3. Finally, we apply our poly-
nomial embedding (PE) method with CCA and obtain 64-
dimensional latent descriptor (m = 64). We fix the offset
parameterδ = 20 for defining neighbors.

Using the latent descriptors, we encode an image-level
feature vector by two approaches. The first is the standard
BoVW histogram with spatial pyramid matching [28]. The
second is the Fisher vector [8], which is a recently proposed
powerful representation. We use 64 Gaussians for estimat-
ing a Gaussian mixture model and concatenate feature vec-
tors from an entire image and three horizontal regions. For
classification, we use LIBSVM [29] and LIBLINEAR [30]
packages for the BoVW and Fisher vector, respectively.

4.2. Fine-grained Visual Categorization

4.2.1. Dataset

We experiment with two publicly available datasets: the
Oxford-Flower102 dataset [4] and the Caltech-Bird200-2010
dataset [3] (Fig. 4).

The flower dataset consists of 102 flower categories. For
each class, 20 images are specified as training samples by the
dataset authors. The remaining samples are used for testing.
Images are roughly cropped, as shown in Fig. 4. The bird
dataset contains 200 bird species. We use 15 samples per class
for training and the remaining samples for testing, as specified
by the authors. In the same manner as the previous study,
we crop images using the provided bounding box and rescale
them so that the shorter axis has 150 pixels [31].

3We use the raw self-similarity descriptor for polynomial embedding
without applying PCA.



Table 1. Comparison of classification rates on the Oxford-Flower102 dataset (%).

Descriptor SIFT (128dim) C-SIFT (384dim) Opp.-SIFT (384dim) Self Sim. (40dim)
BoVW Fisher BoVW Fisher BoVW Fisher BoVW Fisher

Raw 45.2 - 54.0 - 53.4 - 45.2 60.3
PCA64 45.5 60.8 53.5 76.1 53.4 73.7 - -
CCA64 45.7 57.4 55.6 74.5 56.0 72.5 - -
CCA64 (2 neighbors) 43.4 57.7 56.7 74.1 57.7 71.9 47.8 65.8
CCA64 (4 neighbors) 43.4 60.7 57.8 73.3 59.0 73.3 48.1 66.4
PCA64-PE0-CCA64 52.9 64.0 61.8 79.6 62.7 78.0 52.2 62.3
PCA64-PE2-CCA64 54.9 67.5 65.2 80.1 65.2 80.9 56.5 69.9
PCA64-PE4-CCA64 56.8 68.9 67.6 80.5 67.9 80.8 57.3 71.0

Table 2. Comparison of classification rates on the Caltech-Bird200-2010 dataset (%).

Descriptor SIFT (128dim) C-SIFT (384dim) Opp.-SIFT (384dim) Self Sim. (40dim)
BoVW Fisher BoVW Fisher BoVW Fisher BoVW Fisher

Raw 7.5 - 10.1 - 10.7 - 8.6 10.6
PCA64 7.7 11.0 10.2 18.3 10.3 19.7 - -
CCA64 6.7 10.0 10.0 17.9 10.2 17.6 - -
CCA64 (2 neighbors) 7.4 11.0 9.5 17.9 10.2 17.7 8.0 12.2
CCA64 (4 neighbors) 7.9 12.3 11.8 18.7 11.0 18.2 8.4 13.2
PCA64-PE0-CCA64 9.1 12.5 10.6 17.7 11.8 19.7 8.8 11.4
PCA64-PE2-CCA64 9.6 12.9 11.8 20.0 13.6 21.3 9.3 12.4
PCA64-PE4-CCA64 10.2 14.3 12.0 20.8 14.7 22.9 9.3 11.7
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Fig. 3. First two components of compressed SIFT descrip-
tors in the flower dataset. Left: PCA64. Right: PCA64-PE4-
CCA64 (ours).
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Fig. 4. Images from FGVC benchmark datasets. Top:
Oxford-Flower102 [4]. Bottom: Caltech-Bird200-2010 [3].

4.2.2. Experimental Results

For each descriptor, we apply various embedding and dimen-
sionality reduction methods. To illustrate the effectiveness
of PE, we also test applying CCA to the raw descriptor. Ta-
bles 1 and 2 show the results for the flower dataset and bird
dataset, respectively. For example, “PCA64-PE2-CCA64”
means three steps: (1) compress the original raw descrip-
tor into d = 64 dimensions using PCA, (2) compute the
augmented descriptor using PE with two neighbors (Eq. 2),
(3) compress the augmented descriptor into a 64-dimensional
latent descriptor using CCA. Also, “CCA64 (2 neighbors)”
means simply applying CCA to concatenated raw descriptors
including two neighbors.

For both BoVW and Fisher vectors, PE substantially im-
proves the performance of the original descriptors. More-
over, the performance is often in the following order:
PE4>PE2>PE0. This means that including more neighbors
is important for improving the discriminative power. The re-
sults also show that just applying CCA to raw descriptors does
not improve the performance well, even when neighboring
descriptors are concatenated. This fact corresponds to there-
sult in [14]; it indicates the importance of PE for exploiting
local spatial information. Figure 3 illustrates the patch distri-
bution of compressed SIFT descriptors in the flower dataset.
We see that our latent descriptor separates color better than



Table 3. Classification performance using multiple descrip-
tors (%). Fisher vectors with 64 Gaussians are extracted for
each descriptor and integrated at the classifier level.

Flowers Birds
4 desc. (PCA64) 81.6 23.9
4 desc. (PCA64-PE4-CCA64) 87.2 28.1
8 desc. (PCA64 + 85.7 28.8

PCA64-PE4-CCA64)
Previous Work 85.6 [32] 28.2 [33]

80.0 [34] 26.7 [32]
76.3 [35] 26.4 [36]
73.3 [37] 22.4 [37]

19.2 [31]
19.0 [38]
18.0 [7]

PCA, although both of them are based on gray-SIFT. Consid-
ering that color is strongly related to categories in this dataset,
we can expect that our descriptor is more discriminative.

Next, we combine Fisher vectors from each descriptor
(PCA64 and PCA64-PE4-CCA64 descriptors of SIFT, C-
SIFT, opponent-SIFT, and self-similarity) by a late-fusion ap-
proach. We take the average log-likelihood of posterior prob-
ability for each classifier weighted by its individual confi-
dence in validation. Table 3 shows the result. Our best method
outperforms all previously published results4.

4.3. Object and Scene Classification

Although the primary target of our method is FGVC, we try
other problems for further considerations. Here, we perform
object and scene categorization problems using Caltech-101
dataset [39] and MIT indoor scene dataset [40].

The Caltech-101 dataset contains 101 objects and a back-
ground class. Each class has between 31 to 800 images. In all,
we perform 102 classes classification task. We use 30 sam-
ples for training and 50 for testing per class. The MIT indoor
scene dataset consists of 67 indoor scene categories. For this
dataset, training and testing samples are specified by the au-
thors. We use 80 training samples and 20 testing samples per
class.

Table 4 shows the result. Not surprisingly, the PE method
seems less powerful than in FGVC problems, because strong
supervision assumption does not hold in these datasets. How-
ever, we note that combining PCA descriptors and our de-
scriptors in late fusion still improves the performance. This
fact suggests that our method can point out additional dis-
criminative information in addition to standard methods.

4For the bird dataset, [32] uses the bounding box only for training images,
therefore the result is not directly comparable to ours. Nevertheless, we note
that we outperform them on the flower dataset, wherein both our method and
theirs use raw images for training and testing.

5. CONCLUSIONS

In this paper, we presented a simple but powerful method for
augmenting arbitrary local descriptors in the context of fine-
grained visual categorization. We found that polynomials of
descriptors can efficiently capture local spatial information,
thus leading to high performance. Although the dimensional-
ity of polynomials can be quite large, we can easily obtain a
small-dimensional latent vector by simply using image-level
labels for supervised dimensionality reduction. Our latent de-
scriptors can be used naturally with off-the-shelf BoVW tech-
niques. Using our method with the sophisticated Fisher rep-
resentation, we outperformed state-of-the-art methods onthe
standard FGVC datasets.
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local descriptors into a compact image representation,” inProc.
IEEE CVPR, 2010, pp. 3304–3311.

[10] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual categorization with bags of keypoints,” inProc. ECCV
Workshop on Statistical Learning in Computer Vision, 2004.

[11] D. G. Lowe, “Object recognition from local scale-invariant
features,” inProc. IEEE ICCV, 1999, pp. 1150–1157.

[12] T. Trzcinski and V. Lepetit, “Efficient discriminative projec-
tions for compact binary descriptors,” inProc. ECCV, 2012.



Table 4. Classification rate on Caltech-101 and MIT-Indoor datasets (%). Fisher vectors with 64 Gaussians are extracted for
each descriptor. Late-fusion is used to combine PCA64 and PCA64-PE4-CCA64 features.

Caltech-101 MIT-Indoor
SIFT C-SIFT Opp.-SIFT SIFT C-SIFT Opp.-SIFT

PCA64 65.2 57.9 62.5 51.3 49.6 52.6
PCA64-PE4-CCA64 68.1 60.1 65.8 51.5 50.6 54.8
PCA64 + PCA64-PE4-CCA64 69.7 62.3 68.2 54.7 53.6 58.0

[13] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “LDA-
Hash: Improved matching with smaller descriptors,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,
pp. 1–14, 2011.

[14] M. Brown, G. Hua, and S. Winder, “Discriminative learning
of local image descriptors.,”IEEE Transactions on Pattern
Analysis and Machine Intelligencettern, vol. 33, no. 1, pp. 43–
57, 2011.

[15] X. Lan, C. L. Zitnick, and R. Szeliski, “Local bi-gram model
for object recognition,” Tech. Rep. MSR-TR-2007-54, Mi-
crosoft Research, 2007.

[16] D. Liu, G. Hua, P. Viola, and T. Chen, “Integrated feature
selection and higher-order spatial feature extraction for object
categorization,” inProc. IEEE CVPR, 2008.

[17] N. Morioka and S. Satoh, “Building compact local pairwise
codebook with joint feature space clustering,” inProc. ECCV,
2010, pp. 1–14.

[18] N. Morioka and S. Satoh, “Learning directional local pairwise
bases with sparse coding,” inProc. BMVC. 2010, pp. 32.1–
32.11, British Machine Vision Association.

[19] T. Harada, H. Nakayama, and Y. Kuniyoshi, “Improving lo-
cal descriptors by embedding global and local spatial informa-
tion,” in Proc. ECCV, 2010.

[20] T. Harada and Y. Kuniyoshi, “Graphical Gaussian vector for
image categorization,” inProc. NIPS, 2012.

[21] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” inProc. IEEE ICCV,
2011, pp. 2564–2571.

[22] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Bi-
nary robust invariant scalable keypoints,” inProc. IEEE ICCV,
2011, pp. 2548–2555.

[23] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha,
and P. Fua, “BRIEF: Computing a local binary descriptor very
fast,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 34, no. 7, pp. 1281–1298, 2011.

[24] H. Hotelling, “Relations between two sets of variants,”
Biometrika, vol. 28, pp. 321–377, 1936.

[25] G. J. Burghouts and J.-M. Geusebroek, “Performance evalu-
ation of local colour invariants,”Computer Vision and Image
Understanding, vol. 113, no. 1, pp. 48–62, 2009.

[26] K. van de Sande, T. Gevers, and C. G. M. Snoek, “Evaluat-
ing color descriptors for object and scene recognition,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1582–96, 2010.

[27] E. Shechtman and M. Irani, “Matching local self-similarities
across images and videos,” inProc. IEEE CVPR, 2007.

[28] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene
categories,” inProc. IEEE CVPR, 2006, vol. 2, pp. 2169–2178.

[29] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,”ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 3, 2011.

[30] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “LIBLINEAR: A library for large linear classification,”
Journal of Machine Learning Research, vol. 9, pp. 1871–1874,
2008.

[31] B. Yao, A. Khosla, and L. Fei-Fei, “Combining randomization
and discrimination for fine-grained image categorization,” in
Proc. IEEE CVPR, 2011.

[32] Y. Chai, E. Rahtu, and V. Lempitsky, “TriCoS: A tri-level
class-discriminative co-segmentation method for image clas-
sification,” inProc. ECCV, 2012, pp. 794–807.

[33] S Yang, L. Bo, J. Wang, and L. Shapiro, “Unsupervised tem-
plate learning for fine-grained object recognition,” inProc.
NIPS, 2012.

[34] V. Lempitsky and A. Zisserman, “BiCoS: A bi-level co-
segmentation method for image classification,” inProc. IEEE
ICCV, 2011, pp. 2579–2586.

[35] M.-E. Nilsback, An automatic visual flora: segmentation and
classification of flower images, Ph.D. thesis, University of Ox-
ford, 2009.

[36] L. Bo and D. Fox, “Kernel descriptors for visual recognition,”
in Proc. NIPS, 2010.

[37] F. S. Khan, J. van de Weijer, A. D. Bagdanov, and M. Van-
rell, “Portmanteau vocabularies for multi-cue image represen-
tation,” in Proc. NIPS, 2011.

[38] S. Branson, C. Wah, and F. Schroff, “Visual recognition with
humans in the loop,” inProc. ECCV, 2010.

[39] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories,”Journal
of Computer Vision and Image Understanding, vol. 106, no. 1,
pp. 59–70, 2007.

[40] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in
Proc. IEEE CVPR, 2009.


