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Abstract—Automatic image annotation has been an important
research topic in facilitating large scale image management and
retrieval. Existing methods focus on learning image-tag correla-
tion or correlation between tags to improve annotation accuracy.
However, most of these methods evaluate their performance using
top-k retrieval performance, where k is fixed. Although such
setting gives convenience for comparing different methods, it is
not the natural way that humans annotate images. The number
of annotated tags should depend on image contents. Inspired by
the recent progress in machine translation and image captioning,
we propose a novel Recurrent Image Annotator (RIA) model that
forms image annotation task as a sequence generation problem so
that RIA can natively predict the proper length of tags according
to image contents. We evaluate the proposed model on various
image annotation datasets. In addition to comparing our model
with existing methods using the conventional top-k evaluation
measures, we also provide our model as a high quality baseline
for the arbitrary length image tagging task. Moreover, the results
of our experiments show that the order of tags in training phase
has a great impact on the final annotation performance.

I. INTRODUCTION

Image annotation is a task to associate multiple semantic
tags regarding to the contents of images. With the rapid de-
velopment of Internet and social web applications, the amount
of online images created by users is continuously increasing.
The large amount of images brings a heavy burden for image
management and retrieval. Since the major approaches for
people to search or to index images are through referring to the
associated tags, it is a necessary step to annotate these images
with proper tags. However, manually annotating images is an
expensive and labor intensive work for human beings. Hence
it is better if we can learn a model from available image-tag
samples and use the model to automatically label new images
with keywords (tags) from the annotation vocabulary. In fact,
this kind of technique is called automatic image annotation
(AIA) [1], which has been an important research topic in
computer vision for decades.

Previous researches focus on learning the image-to-tag
correlation as well as tag-to-tag correlation to improve the
annotation performance. Although much progress has been
made in the research community, most of the existing methods
overlooked a fundamental philosophy of recognition: recogniz-

Fig. 1. Examples of results showing differences between Top-5 annotations
and arbitrary length annotations. Top-5 annotations tend to generate more false
positives (red). AL: arbitrary length, T5: Top-5, GT: ground truth.

ing the right things. A common conventional evaluation setting
has a fixed annotation length k, and a typical k value 5 has
been used in many previous methods [2]–[5] for the ease of
comparison. However, we argue that this convention can be
insufficiency in previous work, since it is not the normal way
that we humans annotate images, and the assumption of fixed
annotation length is not the fact of realistic images either,
as shown in Figure 1. Therefore arbitrary length annotation
is required for more reasonable annotation results. For top-k
predictions, traditional methods simply select the k tags with
highest prediction scores. For arbitrary length annotation, it is
possible to easily imagine a naive extension that is to threshold
the prediction scores. However, finding a good threshold is
more difficult than merely setting a hyper-parameter as we
might expect, because the optimal threshold can actually be
dependent on each different image.

Instead of struggling to find the appropriate threshold, we
want to import an explicit mechanism to model the annotation
length, for which we originally form the image annotation
task as a sequence generation problem. Therefore we propose
a novel model called Recurrent Image Annotator (RIA) that



jointly uses Convolutional Neural Networks and Recurrent
Neural Networks (RNN) for predicting tag sequences. In the
annotation phase, we just use an image as the initial input of
RIA and then it will automatically generate annotation tags one
by one, as shown in Figure 2. The idea is inspired by recent
success of RNN in machine translation [6], and especially in
image captioning [7], [8], where the task is to generate natural
language sentences from images. The advantages of using
RNN do not only include its nature to generate varied length
outputs, but also its ability to refer to previous inputs when
predicting the current time step output. Such ability allows
RNN to exploit the correlations of both image-to-tag and tag-
to-tag.

Now we have a CNN to extract image visual features, and
an RNN to generate the tag sequence from the visual features,
what do we need next? The answer is: an order. Both machine
translation and image captioning aim to generate sentences,
which have a natural order available for the RNN model to
learn from. Unfortunately, in our image annotation task, there
is no natural order available. Instead, we have to choose or
learn an order to make our proposed model actually work.

Just like sentences obey the language rules to form the order,
we believe that there exist intrinsic “language rules” for tags to
form an order to describe an image. There are two points for
an order to be good in our task. First, the order “rule” should
be based on semantic image and tag information. Second, tag
sequences in each training example should follow the same
rule to be sorted, since only in this way can the model learn
the “rule” from the training examples, and further generalize
the prediction on the test images.

To facilitate the training of our model as well as testing
the importance of tag orders, we propose several strategies to
provide tag orders. And we compare the performance of our
model with different tag orders in the experiments.

The main contributions of our work are as follows:

1) To our best knowledge, our work is one of the first1

to form image annotation task as a sequence generation
problem, and we propose a novel RNN based model
Recurrent Image Annotator to handle image annotation
work.

2) We analyze the insufficiency in existing methods that
they do not pay enough attention to generate image
dependent number of tags, which should be a natural
requirement in realistic tasks. We propose our RIA
model as a high quality baseline for comparing the
performance on arbitrary length image tagging. We hope
that our work can help and encourage future work on
this new task.

3) We propose and evaluate several orders for sorting the
tag inputs of RIA model, and show the importance of
tag order in the tag sequence generation problem.

1We found [9] became publicly available on arXiv.org after we finished
our work. Though there are several similar ideas existing in both papers, the
focuses and motivations of ours are different. We pay more attention to the
annotation length, and the tag sequence order used in training phase.

Fig. 2. General architecture of RIA model. In test phase, once the RIA model
receives the input image I , and is triggered by the START signal, it predicts
the first output tag. Then it starts a loop that uses previous output as input of
the next time step, predicting the tag sequence Y recursively. The loop will
continue until the STOP signal is predicted.

II. RELATED WORK

In this section, we review previous work in AIA and
introduce previous work related to our RIA model, i.e., CNN
and RNN.

A. Automatic Image Annotation

Generally the existing methods of RIA can be grouped into
three categories: generative models, discriminative models,
and nearest neighbor type models. Generative models mini-
mize the generative data likelihood based on topic models [10],
where each topic is a distribution over image features and
annotation tags, or mixture models [2], [11], [12], where the
models define a joint distribution over image features and an-
notation tags. Different from generative models, discriminative
models [13], [14] focus on directly learning a classifier for tag
prediction, and recently CNN based multi-label classification
models have been proposed [15], [16]. Another simple but
powerful group of models are k-nearest-neighbor (KNN) based
models [3]–[5], which also benefit from metric learning of
multiple hand-crafted visual features.

B. Convolutional Neural Networks

The first step in AIA is to extract effective and efficient vi-
sual features from raw image pixels. Traditional methods usu-
ally use hand-crafted global or region based image features, or
the combination of them [4], while recent researches indicate
that features extracted from Convolutional Neural Networks
(CNN) [17], [18] have significantly superior performance over
these hand-crafted features on single-label image classification
task [19], [20]. However, the recent work [21] show that
deep CNN features do not outperform handcrafted features
a lot in the traditional methods. We think one of the possible
reasons is that the benefit from metric learning on multiple
hand-crafted features is lost. Another problem is that currently
there is no suitable loss function that can handle multi-label
image classification perfectly for CNN models (for single-label
classification task defining the optimal loss is trivial).



C. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are networks with loops,
which can be treated as multiple copies of the same network
that are connected by passing messages (state) to the successor.
However, the original architecture of RNN is difficult to train
for long sequences due to gradient exploding and vanishing
problem [22]. The gradient exploding problem can be easily
coped with gradient clipping, i.e., limiting the absolute value
of gradients. The vanishing problem is more difficult to handle,
therefore several variants of RNN have been proposed for
solving the problem of long term dependencies, for example,
LSTM [23] and GRU [24]. These RNN variants use hidden
cell states and gate functions to control how information from
each previous time step is combined and propagated, and have
been proved to work better than vanilla RNN [25].

We choose LSTM as our RNN sub-module just because
it has been widely used and tested. Recent researches [25]
compare LSTM and GRU, showing that they have similar
performance. In our RIA model, RNN is used as a decoder to
decode tag sequence from image input, and is the crucial part
to predict arbitrary length of annotation results.

III. RECURRENT IMAGE ANNOTATOR

In this section, we describe the entire model architecture
first, and then explain the details of each sub-module. For con-
venience and readability, we denote a single training example
as an image I and a target tag sequence Y . The target tag
sequence Y contains training annotations y1, . . . , yT−1 and
a special STOP signal yT . Similarly, an input tag sequence
X contains the START signal x1 followed by the training
annotation tags x2, . . . , xT .

As shown in Figure 2, we use RNN as a decoder that
decodes tag sequence Y from the input image I . To fit the
image and tag sequence into the RNN model, we first embed
them into latent image space and tag space with the image
embedding and tag embedding submodule, respectively. Then
we train our model with the embedded image and tag vectors.
After training, the model will be able to generate a sequence
of tags only from the (unseen) input image.

A. Image Embedding

We either use pre-trained CNN features or jointly train
a CNN to extract image features. In both cases we add a
linear projection layer to project the output of CNN into H
dimensional space, where H is the number of nodes in RNN
hidden layer. In this way the CNN can be directly joined with
the RNN sub-module.

B. Tag Embedding

Instead of directly using one-hot vectors to represent tags,
we map the tags to D dimensional embedding vectors by using
a lookup table like the common way to learn distributed word
embeddings [26]. The lookup table is trainable and can learn
what kind of representation to generate through training. In
this way, the learned D dimensional tag representation can be
optimized for minimizing the annotation error.

TABLE I
DATASET DESCRIPTION

Corel 5K ESP Game IAPR TC12

Vocabulary size 260 269 291
Number of images 4,493 18,689 17,665
Words per image 3.4 / 5 4.7 / 15 5.7 / 23
Images per word 58.6 / 1004 362.7 / 4553 347.7 / 4999

C. Tag Sequence Generation

We describe the tag sequence generation in two phases:
training and testing.

In the training phase, the LSTM accepts an image embed-
ding vector as its initial hidden state h0 and the cell state c0
of LSTM is initialized as zero. The START signal is fed to
the LSTM as its first input x1. From the time step t = 1, the
model will continue computing output score st conditioned on
ht, then predicted tag index ŷt will be decided by:

ŷt = argmax
j

stj for j = 1, . . . , V (1)

where stj is the score for tag index j at time step t and V is
the vocabulary size plus one (for STOP signal). On the other
hand, ht is based on the current input xt, the previous hidden
state ht−1 and cell state ct−1. In this way, when predicting
tags, the model can refer to both the current input tag and
the previous predicted tags. The procedure that how hidden
state and cell state propagate through time step is described
as below:

ft = σ(Wf · [ht−1, xt] + bf ) (2)
it = σ(Wi · [ht−1, xt] + bi) (3)
ot = σ(Wo · [ht−1, xt] + bo) (4)
gt = tanh(Wg · [ht − 1, xt] + bg) (5)
ct = ft � ct−1 + it � gt (6)
ht = ot � tanh(ct) (7)

where ft, it, ot gt are the gate units of LSTM [23], and W∗,
b∗ represent the corresponding weights and bias. The · and �
stand for the operator of matrix multiplication and element-
wise multiplication respectively. The loss function of RIA is
defined as the cross-entropy of prediction score st:

L =

T∑
t=1

− log
exp (styt

)∑V
j=1 exp (s

t
j)

(8)

In the testing phase, referring to Figure 2, the procedure is
similar but simpler. The only needed input is the test image
and the START signal for triggering the first output tag. Then
the sequence generation loop starts, in which the output of
each time step t will be used as the input of next time step
t+ 1, until the STOP signal is predicted.

D. Order of Tag Sequence

To use the original training annotations as the input of
LSTM, we have to sort the tag set to a tag sequence. We



TABLE II
EXPERIMENTAL RESULTS OF ARBITRARY LENGTH ANNOTATION

Corel 5K ESP GAME IAPR TC12

Method Fea-
tures

P R F N+ P R F N+ P R F N+

RIA (dictionary) fc7 30 29 30 138 32 29 29 249 32 28 29 239
RIA (random) fc7 34 34 32 139 36 24 27 230 33 25 28 241
RIA (rare-first) fc7 32 35 32 139 33 31 31 249 35 34 34 267
RIA (frequent-first) fc7 30 30 29 126 34 23 24 216 31 20 22 207

RIA (dictionary) conv5 27 28 26 119 30 26 26 234 30 25 26 240
RIA (random) conv5 28 29 27 127 29 22 25 233 30 20 23 222
RIA (rare-first) conv5 32 33 30 134 31 28 29 243 32 29 30 258
RIA (frequent-first) conv5 28 29 27 125 30 22 24 218 29 19 21 200

RIA (dictionary) finetune 26 29 26 128 31 30 29 251 32 34 31 261
RIA (rare-first) finetune 31 33 31 135 33 33 31 251 35 37 34 265

TABLE III
EXPERIMENTAL RESULTS OF TOP-5 ANNOTATION

Corel 5K ESP GAME IAPR TC12

Method Fea-
tures

P R F N+ P R F N+ P R F N+

MBRM [2] HC1 24 25 25 122 18 19 19 209 24 23 24 223
JEC [3] HC 27 32 29 139 22 25 23 224 28 29 29 250
TagProp [4] HC 33 42 37 160 39 27 32 239 46 35 40 266
2PKNN [5] HC 39 40 40 177 51 23 32 245 49 32 39 274

JEC fc7 31 32 31 141 26 22 24 234 28 21 24 237
2PKNN fc7 332 30 32 160 40 23 29 250 38 23 29 261

RIA (dictionary) fc7 30 29 30 138 32 27 27 241 31 26 27 233
RIA (rare-first) fc7 32 35 32 139 32 32 31 249 35 34 33 267

1 HC: hand-crafted features.
2 For a fair comparison, we only use bold fonts for the highest value among the methods using the same fc7 features.

provide four orders: dictionary order, random order, rare-first
order and frequent-first order. The dictionary order sorts the
tags for each image alphabetically; the random order generates
random tag sequence for each image as its name suggests; the
rare-first order put the rarer tag before the more frequent ones
(based on tag frequency in the dataset); the frequent-first order
put the more frequent tag before the less frequent ones.

IV. DATASETS AND EXPERIMENTAL SETUP

In this section we first present the dataset used in our ex-
periments, then we describe the different experimental settings
and the evaluation measures for the experiments. Finally we
explain the training details in our experiments.

A. Datasets

We adopt three image annotation datasets that have been
used in previous work: Corel 5K [10], ESP Game [27], and
IAPR TC12 [28]. Table I shows statistics of the training sets
of three datasets, some of which are described in a mean /
maximum manner.

B. Experimental Setting

First, we compare RIA model with different tag sequence
orders in the task of arbitrary length annotation. To further

explore the image embedding submodule, we also compare
the RIA models trained with different kinds of CNN features.

Second, we compare RIA model with existing methods on
the three datasets in top-5 evaluation measures. For a fair
comparison, especially we want to compare with the state-of-
the-art methods that use the same CNN features as we adopt
in our model.

C. Evaluation Measures
For both top-5 annotation and arbitrary length annotation,

we use precision P , recall R and F-measure F averaged over
classes as the main evaluation measures. Another widely used
measure N+, which represents the number of classes with
non-zero recall value, is also reported.

D. Training Details
We use three different ways to obtain the visual features:

the last fully-connected layer of a pre-trained CNN denoted as
fc7, the last convolutional layer of a pre-trained CNN denoted
as conv5, and the output of a jointly trained (fine-tuned) CNN.
The specific CNN model used here is the VGG-16 net [19].
For the tag sequence prediction module (LSTM), we set the
dimension of hidden states H and input D both to be 1024,
and we finally choose the number of hidden layers to be 1
after exhaustive validations.
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(a) Corel 5K
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(b) ESP Game
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(c) IAPR TC12

Fig. 3. Arbitrary length annotation results on all datasets. We show the trained models of first 50 epochs for evaluation and comparison of different tag orders.

The learning rate policy used in our experiment is
Adam [29], which has been widely used recently. We set
the initial learning rate, β1, β2 and ε as 0.0001, 0.9, 0.999,
0.1, respectively. Dropout with a ratio of 0.5 is used in the
tag classification layers of RNN. All the hyper-parameters are
selected by cross-validation.

V. EXPERIMENTAL RESULTS

A. Arbitrary Length Annotation

Table II shows that fc7 features achieve better performance
than conv5 features in our model. The fined-tuned CNN
features have a similar performance to fc7 features, but need
much more training time. Thus in the following experiments
we only compare our models using fc7 features with other
methods. Also, the rare-first order outperforms other orders in

almost all evaluation measures. From Figure 3, we observe that
models using rare-first order converge faster than others, and
the difference is even more significant in the larger datasets
ESP Game and IAPR TC12. The random order has a slight
advantage over other orders in precision, while in terms of
recall it has very poor performance. For F-measure, dictionary
and random order have similar performance. The frequent-first
order has the worst performance in recall and F-measure.

We compare the experimental results with our expectation:
First, though dictionary order actually assigns all the tags of
training examples in the same rule, it is almost meaningless
since it does not provide any semantic information about the
images or tags, and thus it leads to a poor performance.
Second, though random order provides some possible proper
orders for each training example, it does not follow the same



rule and makes the model confused about the noisy orders,
which may also result in a low recall rate. Third, rare-first
order considers the frequency of tags and to some extent can
help handle the rare tags problem, which is very important for
improving the per-class measures. Besides, it uses the same
rule to sort tags of all training examples, hence makes it easy
for the model to learn. Finally, the frequent-first order has
worse performance than we expected. We analyze the reasons
why frequent-first order performs poorly especially in large
datasets: the frequent tags are usually easier to predict than
rare tags, and the frequent-first order puts the frequent tags
first, so easy work becomes easier, but hard work becomes
more difficult, which causes the extremely low per-class mean
recall rate. The lowest N+ score also indicates that frequent-
first order harms the ability of the model to correctly predict
rare tags.

Our experiments show that the order of tag sequence is
crucial for tag sequence generation. However, note that we
are only using several naive approaches to decide the order,
and we believe that there should be better ways to choose or
learn an optimal order for this task.

B. Top-5 annotation

As shown in Table III, in the conventional top-5 annotation
task, our model outperforms several state-of-the-art methods
that use the same CNN features. Although the same methods
with multiple hand-crafted features and metric learning have
better performance, the advantage of using deep features is
that we can avoid the complexity of hand-crafted features and
the expensiveness of metric learning. Besides the comparable
performance to several state-of-the-art methods, our model
also runs in an extremely fast testing speed: 5 ms per image
on an NVIDIA Titan X GPU. This is very difficult for
KNN based methods to achieve, especially in large scale
practical problems. That is because the testing time of KNN
based methods is increasing linearly with the size of training
examples, while the testing time of our model is constant, i.e.,
not affected by the dataset size.

VI. CONCLUSION

We transformed the image annotation task to a sequence
generation problem, and proposed a novel Recurrent Image
Annotator model that receives an image as input and predicts
a sequence of tags recursively. We evaluated our model in the
traditional top-5 evaluation setting on three different image
annotation datasets. The experimental results show that our
model can achieve comparable performance to some state-of-
the-art methods. On the condition of only using deep features
without expensive metric learning, our model outperforms
several state-of-the-art methods. We also evaluated our model
on the arbitrary length annotation task, where the model
has to decide appropriate annotation length automatically. To
explore the influence of the tag sequence order used in the
training phase, we evaluated several order candidates and
our experiments confirmed the importance of a proper order
in the tag sequence generation problem. From the empirical

experimental results, we conclude that RNN model is capable
of doing image annotation task, and since this is only a start
for adopting RNN or other sequence generation techniques in
this field, we believe that there is much more to explore in the
future work.
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