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Abstract—We propose a novel approach for unsupervised
visual domain adaptation that exploits auxiliary information
in a target domain. The key idea is to embed data in the
target domain into a subspace where samples are better orga-
nized, expecting auxiliary information to serve as a somewhat
semantically related signal. Specifically, we apply partial least
squares(PLS) to RGB image features and corresponding depth
features captured at the same time. Thus, we can improve
the performance of domain adaptation without any help from
manual annotation in the target domain. In experiments,
we tested our approach with two state-of-the-art subspace
based domain adaptation methods and show that, our method
consistently improves the classification accuracy.
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I. INTRODUCTION

Visual object recognition is one of the most fundamental
technologies in areas of multimedia. To successfully train a
recognition system, we generally require a lot of supervised,
i.e., manually annotated, training images specifically pre-
pared for each target environment. However, hand labeling
training datasets is quite time consuming and is regarded
as a bottleneck in practical situations. Therefore, in recent
years, visual domain adaptation, which was first proposed
by Saenko et al. [1], has gathered more and more attention.
The objective of domain adaptation is to transfer a classifier
obtained from labeled examples in one domain to another
domain. The domain where a classifier is trained is called the
“source domain” and is expected to provide a lot of labeled
data. The domain in which the classifier is actually tested is
called the “target domain” and is assumed to have different
characteristics in its nature, e.g., illumination and resolution,
from the source domain. Figure 1 shows an example of the
difference between two domains.

Among the many approaches to tackle this problem, un-
supervised domain adaptation, where no labeled example is
assumed in the target domain, is attractive for its practicality
and has been intensively studied. Most previous work on
unsupervised domain adaptation has typically used only
visual information in the target domain, making the problem

Figure 1. Difference between source and target domains

extremely challenging1.
However, nowadays, we can easily get rich multime-

dia information in addition to RGB images such as GPS
and gyroscopes owing to recent remarkable advances in
wearable/sensing devices. Although this kind of auxiliary
information has not been paid much attention in the con-
text of visual domain adaptation, it is expected to work
somewhat as semantically related signals and relax the
extreme difficulty of unsupervised domain adaptation. In
particular, considering that depth sensors are now a common
technology, e.g., Kinect, distance information is thought to
be the most promising and practical auxiliary information
for supporting visual domain adaptation.

Motivated by these reasons, in this study, we propose
a novel approach of unsupervised domain adaptation that
exploits not only visual information but also distance infor-
mation as an auxiliary signal to boost the performance. We
implement our approach with two subspace based methods
and demonstrate its effectiveness by using a real-world
dataset for testing.

II. RELATED WORK

The first work on domain adaptation for visual object
recognition was proposed by Saenko et al. [1]. This method
is based on information-theoretic metric learning (ITML)
[2], which is a Mahalanobis distance metric learning method

1We might also assume a few labeled examples in a semi-supervised
case, although this is not the scope of this work.



for letting the distance between samples be smaller if
they belong to the same class, otherwise larger. This is a
semi-supervised method where a large number of labeled
examples is available in the source domain and also a few
labeled ones are provided in the target domain.

Considering that our objective is to reduce the cost of
manual labeling, an unsupervised setting, where no labeled
example is used in the target domain, is the ultimate goal of
domain adaptation, although it is essentially a quite difficult
task. For unsupervised domain adaptation, the subspace
based approach has been known to be a promising strategy,
where multiple intermediate subspaces between source and
target ones are generated as “virtual” domains that blend the
properties of the source and target. This approach was first
proposed by Gopalan et al. [3] as the geodesic flow sampling
(GFS) method. This method creates intermediate subspaces
by sampling points from the geodesic flow on the Grassmann
manifold from the source to the target subspaces. One
problem of GFS is the trade-off between performance and
the dimensions of feature vectors that depend on a number
of sampled intermediate subspaces. Namely, to improve the
performance, we need to take more intermediate subspaces,
but this results in higher computational costs. Some methods
are proposed to relax this problem.

The geodesic flow kernel (GFK) [4] is based on an
analytic solution of what GFS has done in the sampling
based approach. As an another example of a subspace based
method, Fernando et al. proposed the unsupervised visual
domain adaptation using subspace alignment (SA) method
[5]. It shows that a transformation matrix that best matches
the source subspace to the target one can be obtained in a
simple closed form, leading to an extremely fast algorithm.

The subspace based approach is probably the current most
successful approach for the unsupervised domain adaptation
problem. In this framework, it is important source and target
subspaces are constructed for adaptation. It has been shown
that applying PLS [6] analysis to build the subspace of
the source domain improves the final classification accuracy
more than applying PCA instead. This is probably because
PLS can make a better subspace by using corresponding
semantic information (category label in their case), and thus,
lead to a better knowledge transfer. However, since labels
are provided in the source domain only, there has been
no choice but to apply PCA for the target domain. In this
study, we propose a novel approach of applying PLS in the
target domain by using visual information and corresponding
auxiliary information instead of labels. This is a fundamental
concept and can be broadly applied to any subspace based
domain adaptation methods.

III. PROPOSED METHOD

A. Concept

In previous work on unsupervised domain adaptation, it
has been typically assumed that we have a lot of unlabeled

images in the target domain. In the near feature, it will not
be difficult to assume that auxiliary signals are provided
naturally thorough multimedia devices, as we discussed in
the introduction.

We improve the subspace based visual domain adaptation
methods by applying PLS analysis over visual information
and auxiliary information in the target domain. Figure 2
shows the difference between our method and the previous
work.

Figure 2. Approaches of our approach and previous work

B. Partial Least Squares
Partial least squares (PLS) was proposed by Wold et al.

[6] in the field of chemometrics. It is a statistical multivariate
analysis method for finding a latent subspace that bears some
relation to principal component analysis.

While PCA finds a subspace that preserves the variance
of one observed variable (visual features), PLS is used
to generate a subspace that has relationships between two
variables, i.e., visual features and labels, or visual features
and auxilary information. More specifically, PLS maximizes
the covariance of two variables projected into the latent sub-
space. Therefore, a subspace obtained via PLS is expected
to capture the essential latent structure that bridges the two
observed variables.

C. Process Flow
Figure 3 shows the process flow of our method. It consists

of five parts as follows.
1) Extract the image features from RGB images in both

domains.
2) Apply PLS analysis in source domain to obtain the

source subspace by using label information.
Note that the idea of applying PLS is proposed in the
previous work and is not new itself. In the experiments
(Section IV), we also test PCA for building source
subspaces and investigate their performances.

3) Extract the distance features from depth images.
4) Apply PLS analysis in the target domain to obtain the

target subspace by using distance features. This is the
most important process of our method.



Figure 3. Process flow of our method. Image and label pairs are provided
in the source domain, while image and depth image pairs are provided in
the target domain.

We assume that the features from depth images that
interrelate with their classes serve as cues to obtain
a better subspace for the target domain. More specif-
ically, we expect that samples from the same hidden
concept, i.e., class, are located near in this subspace.

5) Apply a subspace based domain adaptation method
on top of the learned source and target subspaces. In
experiments, we exploit two methods: GFK and SA.
We exploit publicly available codes provided by the
authors of each method.

Finally, we conduct classification by using the transferred
representation obtained by our method. In the experiments,
we use the nearest neighbor algorithm as it is the simplest
classifier and suitable for investigating the pure performance
of domain adaptation.

IV. EXPERIMENTS

A. Dataset

We used ImageNet [7] as the source dataset and the
RGB-D object dataset (B3DO) [8] as the target. The latter
provides depth images corresponding to each RGB image.
We chose six classes that commonly appear in both B3DO
and ImageNet. We cropped the images and depth images
of B3DO by using the provided bounding boxes of objects.
Table I summarizes the details of our dataset. Figure 4 shows
examples of dataset images.

B. Setup

The core contribution of our study is applying PLS to
the target domain. The objective of our experiments is to
prove its effectiveness, for which we compare the four
combinations of source and target subspaces as follows.

Table I
NUMBER OF SAMPLES

Class B3DO (target) ImageNet (source)
bottle 238 920
bowl 142 919
cup 256 919
keyboard 129 1512
monitor 243 1134
sofa 109 982
SUM 1119 6386
AVG 186.5 1064.3

Figure 4. Examples of dataset images. For visibility, we adjusted the
dynamic range of depth images in this figure. In the experiments, we use
raw depth images of the B3DO dataset (best viewed in color).

1) OURS1 (Source: PCA Target: PLS)
2) Baseline1 (Source: PCA Target: PCA)
3) OURS2 (Source: PLS Target: PLS)
4) Baseline2 (Source: PLS Target: PCA)
The methods applying PLS analysis in the target domain

correspond to the proposed methods, while the methods
applying PCA on the target domain correspond to the
baselines. In all cases, we tested two independent subspace
based domain adaptation methods: GFK and SA.

The comparison of OURS1 and Baseline1 illustrates the
effectiveness of our approach when PCA was used for build-
ing the source subspace. Similarly, OURS2 and Baseline2
are comparable when PLS was used in the source domain.
We expected to observe the respective improvements in
each case. We experimentally chose dimensions of subspaces
among 10, 20, 30, 40, and 50 that maximize the classification
accuracy for each case because fixed dimensions may bias
a particular method to work better.

For visual features, we extracted dense SIFT features [9]
and created a bag-of-words dictionary of 1000 words by
using only source (ImageNet) images. We then obtained a
1000 dimensional image representation. As for distance fea-
tures, we exploited the kernel descriptors [10] proposed by
Bo et al. In their work, they proposed two types of features;
one is based on both RGB and depth images, and the other
is based on depth images only. In our experiment, we used
the latter one, and obtained 14000-d depth representations.
We used the public codes provided by the authors2.

2http://www.cs.washington.edu/robotics/projects/kdes/



We changed the numbers of source samples from 20, 50,
100, and 300 to 500 per class (total: 120, 300, 600, 1800,
and 3000).

C. Results

Table II
RECOGNITION ACCURACY OF SOURCE SAMPLES EXPERIMENT

OURS1 Baseline1 OURS2 Baseline2
120 (GFK) 28.33 28.95 32.35 31.64
300 (GFK) 29.31 29.85 32.71 31.55
600 (GFK) 29.04 28.60 32.53 28.87
1800 (GFK) 32.17 30.92 34.32 31.81
3000 (GFK) 33.42 31.72 34.94 33.92
Exec. time (GFK) 3.83 2.26s 135.17s 128.03s
120 (SA) 34.05 29.85 34.23 30.83
300 (SA) 33.15 30.21 32.17 31.90
600 (SA) 33.78 33.15 33.33 32.71
1800 (SA) 33.15 30.21 32.17 31.90
3000 (SA) 34.85 32.44 33.69 32.89
Exec. time (SA) 3.07s 0.98s 130.90s 120.30s
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Figure 5. Result on geodesic flow kernel (best viewed in color)
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Figure 6. Result on subspace alignment

Table II shows the result with a different number of source
samples, and the average execution times of each method
on 120 source samples case. Figure 5 and Figure 6 show
the results of our methods for GFK and SA, respectively.
For both GFK and SA, our methods (OURS1 and OURS2)
that applied PLS analysis in the target domain outperformed
the baselines. It is notable that our approach improved the
performance in all four test cases of the combinations of
the domain adaptation method (GFK and SA) and source
subspace method (PCA and PLS), indicating its consistent
effectiveness.

V. CONCLUSION

We proposed a novel approach of unsupervised visual do-
main adaptation that improved subspace based methods with
auxiliary information. In experiments, we showed that the
proposed approach consistently outperformed the previous
ones over two independent subspace based domain adapta-
tion methods. We demonstrated the consistent effectiveness
of our method in several situations in which the number of
source samples was changed. To the best of our knowledge,
we proposed the first visual domain adaptation method that
utilizes auxiliary information in a target domain.

Although we used only distance features as auxiliary
information, our method is generic and can be used with
any weakly coupled auxiliary information in theory. Con-
sidering that other multimedia information such as sounds
and GPS can now be easily obtained, we plan to evaluate
whether they can also be used for domain adaptation. In
addition, it would be interesting to exploit many types of
multimedia information jointly to overcome domain gaps
more effectively.
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