
The 17th Meeting on Image Recognition and Understanding

Stacked Local Autocorrelation Features

Hideki NAKAYAMA1,a)

1. Introduction

Extracting informative image features has always been

one of the most important topics in visual recognition. Since

it was proposed in 1988, higher-order local autocorrelation

(HLAC) features [20] have been known for their exceptional

balance between performance and computational efficiency

and have been successfully used for many visual recogni-

tion tasks including face and gesture recognition [11], [23],

anomaly detection [19], and image annotation [18]. How-

ever, to improve the recognition performance of HLAC, it

is necessary to use correlations with a much higher order as

well as large masks, making the number of features exponen-

tially large and implementation infeasible. For this reason,

despite its name, HLAC has been used with relatively low-

order correlations. This problem comes from the inherent

”shallow” architecture of HLAC. In recent years, HLAC has

generally been outperformed by more sophisticated hand-

crafted features encoding high-level nonlinearities such as

bag-of-visual-words variants [4], [21].

We propose here an efficient method to exploit higher-

order correlation information by hierarchically stacking low-

order local autocorrelations, which we named the SLAC

method. The method was motivated by the recent remark-

able success achieved in deep learning [9]. The key idea in

our method is to decompose the computation of higher-order

correlations into a multi-layer network rather than comput-

ing everything in a single input layer as the original HLAC

does. Experimental results show that SLAC represents pow-

erful discriminative information with a moderately sized fea-

ture vector compared to traditional HLAC. Moreover, it is

shown that the SLAC scheme can be applied not only to

raw pixels but also to generic image descriptors.

2. Related Work and Our Approach

2.1 Higher-order Local Autocorrelation (HLAC)

HLAC features [20] consist of the autocorrelations of

neighboring pixels within an image. The d-th order HLAC

features can be represented as followed.

fd(a1, . . . ,ad) =

∫
I(r) · · · I(r + ad)dr, (1)

where r is a reference point, I(r) is its pixel value, and

1 Graduate School of Information Science and Technology, The
University of Tokyo, Hongo 7–3–1, Bunkyo-ku, Tokyo, 113–
8656 Japan

a) nakayama@ci.i.u-tokyo.ac.jp

{a1, ...ad} are displacement vectors defining neighbors. Fig-

ure 1(a) shows an example when d = 2. The pattern formed

by r and a is called a ”mask pattern” (Fig. 1(b)). For

c-channel inputs (e.g., c=3 for color images), we also con-

sider the combination of channels in mask patterns without

duplications [10]. The width (number of pixels) of the unit

displacement vector is called the mask width; it is denoted

by δ and should be tuned properly.

The HLAC features consisting of autocorrelations up to

the d-th order are called “at most the d-th order HLAC”

features. If we take a larger d, their representation ability

increases; however, the computation cost becomes substan-

tially larger. Whereas the dimensions of the first-order and

second-order color-HLACs are 45 and 739, the third-order

ones become 8023- and 153,115-dimensional with mask sizes

of three and five, respectively. Generally, it is not easy to

handle feature vectors of this size. Therefore, at most, the

first- or second-order HLAC features with mask size three

have generally been used in practice.

() () () () rararraa dIIIfd 2121
, ++= ∫

(a) (b)

Mask size 3

zeroth-order

Mask size 3

first-order

Mask size 5

second-order

(examples)

Fig. 1 (a) Mask pattern corresponding to specific displacement
vectors. (b) Examples of HLAC mask patterns.

2.2 Deep Learning by Stacking

Deep convolutional neural networks (DCNNs) have re-

cently achieved surprisingly high performance and are now

the state-of-the-art methodology used for visual recognition

[3], [13], [14], [15]. These works have proved that deep ar-

chitectures are fundamentally important to extract rich dis-

criminative information and that traditional features are too

shallow to do this. However, optimizing deep networks is not

easy for non-experts because they are sensitive to numerous

hyperparameters that should be carefully tuned [2].

Meanwhile, deep architectures have also been studied in

traditional object recognition pipelines. For example, Hy-

perFeatures [1] and Deep Fisher Networks [24] stack bag-

of-words [4] based feature extraction layers multiple times

1

The 17th Meeting on Image Recognition and Understanding

to encode more discriminative information. These meth-

ods construct each layer one by one in a feed-forward man-

ner, which is somewhat analogous to the unsupervised pre-

training stage in deep learning [9]. Although their net-

works are thought to be suboptimal in the sense that they

do not perform global optimization through the entire net-

work, they achieve good performance and can be stably con-

structed with a significantly lower computational cost com-

pared to DCNNs [24].

The success of these studies motivated us to develop

SLAC; its specific objective is to ”stack” local autocorre-

lation layers in order to extract rich information related to

truly higher-order correlations of inputs in a more efficient

manner with the help of deep structures. Indeed, HLAC can

be interpreted as an instance of a ”shallow” sum-product

network (SPN) [22], which is a deep network consisting of

sum layers and product layers where the sums and products

of input variables are respectively passed to the next layer.

Namely, responses of mask patterns at each local point are

computed in the first product layer and then averaged over

the entire image in the following sum layer (Figure 2). Un-

like many deep learning methods, the theoretical basis of

this network has been revealed relatively well. It has been

pointed out that for representing a model with a fixed com-

plexity, shallow SPN generally requires exponentially more

hidden nodes compared to deep SPN [5]. This fact suggests

the importance of deepness in sum-product models includ-

ing HLAC and SLAC. While the original HLAC features,

which are inherently shallow, become exponentially large to

attain rich information related to higher-order correlations,

SLAC features are expected to be efficiently approximated

by repetitively computing low-order correlations.

Fig. 2 Sum-product architecture of HLAC.

3. Stacking Local Autocorrelations

Figure 3 illustrates the overall architecture of SLAC. Our

idea is quite simple and straightforward. SLAC is the iter-

ation of the two basic operations below.

• Compute low-order (at most, the first- or second-order)

local autocorrelations (LAC) for each small local region

within inputs.

• Compress the obtained local feature vectors into a mod-

erate size via principal component analysis (PCA) so

that computation of correlations in the next layer is

feasible while retaining the essential information in that

layer.

This procedure can be repeated multiple times in order to

gradually capture global higher-order correlation informa-

tion in higher layers. Finally, we place a logistic regression

classifier taking all responses of the final layer as the inputs.

LAC

(or arbitrary descriptors)

compressed layer

local
features

LAC global

average

PCA

Fig. 3 SLAC architecture with two LAC layers.

4. Experiment

4.1 Experimental Setup

We use three datasets in our experiment: CIFAR-10 [12],

MNIST [16], and Caltech-101 [6]. CIFAR-10 and MNIST

have been flagship datasets for deep learning problems.

CIFAR-10 is a dataset of tiny color images (32x32 pixels)

spanning ten object classes. It contains 5,000 training and

1,000 testing samples per class. MNIST consists of tiny gray

images (28x28 pixels) of handwritten digits (0 to 9), and

has roughly 6,000 training and 1,000 testing samples spec-

ified per class. For the input layer, we used color (c = 3)

(H)LAC for CIFAR-10 and gray (c = 1) for MNIST.

Caltech-101 has been a de-facto standard dataset for ob-

ject recognition. We used 30 training samples per class fol-

lowing the standard experimental protocol. For this dataset,

also tested dense SIFT features as the input to show that the

SLAC framework is applicable to generic descriptors. Note

that applying an HLAC-like scheme to generic descriptors

was proposed by [8], [17] and is not new. The objective here

is to show that this methodology can also be boosted by the

same SLAC framework.

We describe our SLAC network by a concatenation of the

operations starting from the bottom layer to the top layer,

where each operation is defined as follows.

• (H)LAC(d,m,δ,c,n): At most the d-th order LAC fea-

tures with mask size m and mask width δ extracted

from a c-channel n× n patch. The letter ”G” in the n

position means that features are extracted globally. For

clarification, we use the notation ”HLAC” for the stan-

dard implementation of HLAC features [20] and ”LAC”

for any single layer in SLAC.

• SIFT(n,s): SIFT descriptors of size n × n are densely

extracted from raw images spacing s pixels.

• PCA(k): PCA compression into k variables.

For example, LAC(2,3,1,3,4)-PCA(16)-LAC(1,3,1,16,G)

means that we extract at most the second-order (d = 2)

LAC with mask size m = 3 and mask width δ = 1 from

each 4x4 patch of c = 3 images (raw color images), com-

press them into k = 16 dimensions using PCA, and further

compute at most the first-order LAC globally.

2

The 17th Meeting on Image Recognition and Understanding

4.2 Results

Table 1 summarizes the performance of SLAC compared

to the original HLAC on CIFAR-10. For each method,

we set optimal mask width δ, which was experimentally

tuned. Among the baseline HLACs, the third-order one (1-

c) showed the best performance. When we start from the

first-order LAC, which is the same descriptor as that of (1-

a), our method with the second LAC layer (1-e) achieved

better performance, although the dimension of the final fea-

ture vector was substantially smaller. Similar results were

observed with MNIST (Table 2). Our method (2-e) per-

formed better than high-dimensional HLACs (2-d).

Further deepening the model might produce better re-

sults; however, we found this to be difficult with these

datasets because the images are too small. Therefore, we

tested deeper models on Caltech-101 (Table 3). We ob-

served that increasing the number of LAC layers generally

improved the performance while keeping the size of the re-

sulting feature vectors the same, although adding the fourth

LAC layer (3-f,i) did not improve the performance.

Table 4 presents a comparison using SIFT descriptors as

inputs. (4-a) and (4-b) correspond to the SIFT and PCA

based LAC features, the idea of which was proposed by [8],

and they serve as the baseline here. We also show the perfor-

mance of the standard bag-of-visual-words method [4] using

the same SIFT descriptors and 4000 visual words (4-c). We

successfully improved the performance from the single-LAC

baselines ((4-a) to (4-e,g), (4-b) to (4-h)) as the number

of LAC layers was increased and achieved better than the

bag-of-words baseline. Because SIFT descriptors are high-

dimensional (c = 128), it is almost impossible to compute

higher-order correlations in one layer as the original HLAC

does. In such cases, the SLAC method is more suitable and

could be a powerful tool to model higher-order statistics.

Finally, we combined our methodology with the Fisher

vector framework (Table 5). We implemeted Fisher vector

with a GMM of 64 Gaussians. The baseline Fisher vector (5-

a) achieves 58.3% which is much better than the best scores

of SLAC. However, we observed that putting the Fisher fea-

ture extractor on top of the SLAC network result in a mod-

erate performance improvement. Moreover, combining the

original Fisher vector and the hybrid ones in late fusion sub-

stantially boosted performance. This result indicates that

out method can extract different statistical properties of lo-

cal features and is complementary to the standard Fisher

vector.

5. Conclusion

The recent success in deep learning motivated us to pro-

pose a novel method called SLAC to efficiently exploit

higher-order correlations of inputs in a moderately sized fea-

ture vector. SLAC builds a network in a deterministic feed-

forward approach based on simple eigenvalue problems, so

it does not require a substantial training cost; it can be eas-

ily trained on a single CPU. Moreover, once the network is

built, we can achieve high-speed feature extraction inherited

from HLAC. In addition, our method can also be applied to

generic descriptors such as SIFT. The results obtained in

experiments are encouraging and are thought to suggest a

new direction in representation learning.

SLAC is interpreted as a greedy layer-wise pre-training

of sum-product networks. Therefore, our future task is to

experiment with a discriminative fine-tuning approach [7] to

see if we can further improve the performance.

References

[1] Agarwal, A. and Triggs, B.: Hyperfeatures -Multilevel local
coding for visual recognition, Proc. ECCV (2006).

[2] Bengio, Y.: Practical recommendations for gradient-based
training of deep architectures, Neural Networks: Tricks of
the Trade (2012).

[3] Ciresan, D., Meier, U. and Schmidhuber, J.: Multi-column
deep neural networks for image classification, Proc. IEEE
CVPR (2012).

[4] Csurka, G., Dance, C. R., Fan, L., Willamowski, J. and
Bray, C.: Visual categorization with bags of keypoints, Proc.
ECCV Workshop on Statistical Learning in Computer Vi-
sion (2004).

[5] Delalleau, O. and Bengio, Y.: Shallow vs. deep sum-product
networks, Proc. NIPS (2011).

[6] Fei-Fei, L., Fergus, R. and Perona, P.: Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories, Journal of
Computer Vision and Image Understanding, Vol. 106, No. 1,
pp. 59–70 (2007).

[7] Gens, R. and Domingos, P.: Discriminative learning of sum-
product networks, Proc. NIPS (2012).

[8] Harada, T., Nakayama, H. and Kuniyoshi, Y.: Improving
local descriptors by embedding global and local spatial in-
formation, Proc. ECCV (2010).

[9] Hinton, G. E. and Salakhutdinov, R. R.: Reducing the di-
mensionality of data with neural networks, Science, Vol. 313,
pp. 504–507 (2006).

[10] Kato, T., Kurita, T., Otsu, N. and Hirata, K.: A sketch re-
trieval method for full color image database -query by visual
example-, Proc. ICPR, pp. 213–216 (1992).

[11] Kobayashi, T. and Otsu, N.: Action and simultaneous
multiple-person identification using cubic higher-order local
auto-correlation, Proc. ICPR, pp. 741–744 (2004).

[12] Krizhevsky, A.: Learning multiple layers of features from
tiny images, Master’s thesis, Toronto University (2009).

[13] Krizhevsky, A., Sutskever, I. and Hinton, G. E.: ImageNet
classification with deep convolutional neural networks, Proc.
NIPS (2012).

[14] Le, Q. V., Ranzato, M. A., Monga, R., Devin, M., Chen, K.,
Corrado, G. S. and Ng, A. Y.: Building high-level features
using large scale unsupervised learning, Proc. ICML (2012).

[15] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P.: Gradient-
based learning applied to document recognition, Proc. of the
IEEE (1998).

[16] LeCun, Y.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[17] Nakayama, H., Harada, T. and Kuniyoshi, Y.: Dense sam-
pling low-level statistics of local features, Proc. CIVR (2009).

[18] Nakayama, H., Harada, T. and Kuniyoshi, Y.: Image anno-
tation and retrieval based on efficient learning of contextual
latent space, Proc. ICME, pp. 858–861 (2009).

[19] Nanri, T. and Otsu, N.: Unsupervised abnormality detection
in video surveillance, Proc. MVA, pp. 574–577 (2005).

[20] Otsu, N. and Kurita, T.: A new scheme for practical, flexi-
ble and intelligent vision systems, Proc. IAPR Workshop on
Computer Vision (1988).

[21] Perronnin, F., Sánchez, J. and Mensink, T.: Improving the
Fisher kernel for large-scale image classification, Proc. ECCV
(2010).

[22] Poon, H. and Domingos, P.: Sum-product networks: A new
deep architecture, Proc. UAI (2011).

[23] Shinohara, Y. and Otsu, N.: Facial expression recognition
using Fisher weight maps, IEEE FG (2004).

[24] Simonyan, K., Vedaldi, A. and Zisserman, A.: Deep Fisher
networks for large-scale image classification, Proc. NIPS
(2012).

3

The 17th Meeting on Image Recognition and Understanding

Table 1 Classification performance on CIFAR-10 dataset (%).

No. Description of network Dims. Acc. (%)
(1-a) HLAC(1,3,2,3,G) 45 42.47
(1-b) HLAC(2,3,2,3,G) 739 55.25
(1-c) HLAC(3,3,2,3,G) 8023 61.49
(1-d) HLAC(2,5,2,3,G) 5419 59.82

SLAC (Ours)
(1-e) LAC(1,3,2,3,4)-PCA(16)-LAC(1,3,2,16,G) 1176 63.24

Table 2 Classification performance on MNIST dataset (%).

No. Description of network Dims. Acc. (%)
(2-a) HLAC(2,3,3,1,G) 35 89.10
(2-b) HLAC(3,3,3,1,G) 153 95.95
(2-c) HLAC(2,5,2,1,G) 219 96.86
(2-d) HLAC(3,5,3,1,G) 2245 98.61

SLAC (Ours)
(2-e) LAC(2,3,2,2,4)-PCA(16)-LAC(1,3,2,16,G) 1176 98.88
(2-f) LAC(2,3,1,2,4)-PCA(16)-LAC(1,3,1,16,3)-PCA(16)-LAC(1,3,1,16,G) 1176 98.49

Table 3 Classification performance on Caltech-101 dataset (%). Color (H)LAC features
were used for inputs.

No. Description of network Dims. Acc. (%)
(3-a) HLAC(1,3,8,3,G) 45 21.3
(3-b) HLAC(2,3,8,3,G) 739 29.5
(3-c) HLAC(3,3,8,3,G) 8023 32.0

SLAC (Ours)
(3-d) LAC(1,3,3,3,4)-PCA(16)-LAC(1,3,3,16,G) 1176 31.8
(3-e) LAC(1,3,3,3,4)-PCA(16)-LAC(1,3,3,16,2)-PCA(16)-LAC(1,3,2,16,G) 1176 35.2
(3-f) LAC(1,3,3,3,4)-PCA(16)-LAC(1,3,3,16,2)-PCA(16)-LAC(1,3,2,16,2)-PCA(16)-LAC(1,3,2,16,G) 1176 35.2
(3-g) LAC(1,3,3,3,4)-PCA(24)-LAC(1,3,3,24,G) 2628 31.5
(3-h) LAC(1,3,3,3,4)-PCA(24)-LAC(1,3,3,24,2)-PCA(24)-LAC(1,3,2,24,G) 2628 35.0
(3-i) LAC(1,3,3,3,4)-PCA(24)-LAC(1,3,3,24,2)-PCA(24)-LAC(1,3,2,24,2)-PCA(24)-LAC(1,3,2,24,G) 2628 35.4

Table 4 Classification performance on Caltech-101 dataset (%). Dense SIFT descriptors
were used for inputs.

No. Description of network Dims. Acc. (%)
(4-a) SIFT(24,4)-PCA(16)-LAC(1,3,4,16,G) 1176 46.3
(4-b) SIFT(24,4)-PCA(24)-LAC(1,3,4,24,G) 2628 47.3
(4-c) SIFT(24,4)-BoW(4000) (with histogram intersection kernel and SVM) 4000 47.4

SLAC (Ours)
(4-d) SIFT(24,4)-PCA(16)-LAC(1,3,1,16,2)-PCA(16)-LAC(1,3,1,16,G) 1176 45.0
(4-e) SIFT(24,4)-PCA(16)-LAC(1,3,1,16,2)-PCA(16)-LAC(1,3,1,16,2)-PCA(16)-LAC(1,3,1,16,G) 1176 48.4
(4-f) SIFT(24,4)-PCA(24)-LAC(1,3,1,24,2)-PCA(24)-LAC(1,3,1,24,G) 2628 47.3
(4-g) SIFT(24,4)-PCA(24)-LAC(1,3,1,24,2)-PCA(24)-LAC(1,3,1,24,2)-PCA(16)-LAC(1,3,1,16,G) 1176 50.3
(4-h) SIFT(24,4)-PCA(24)-LAC(1,3,1,24,2)-PCA(24)-LAC(1,3,1,24,2)-PCA(24)-LAC(1,3,1,24,G) 2628 52.1

Table 5 Combining SLAC and Fisher vector frameworks. Classification performance on
Caltech-101 dataset (%).

No. Description of network Acc. (%)
(5-a) SIFT(24,4)-PCA(64)-Fisher (baseline) 58.6
(5-b) SIFT(24,4)-PCA(16)-LAC(1,3,4,16,2)-PCA(64)-Fisher 58.9
(5-c) SIFT(24,4)-PCA(16)-LAC(1,3,4,16,2)-PCA(16)-LAC(1,3,1,16,2)-PCA(64)-Fisher 54.3

(5-a) + (5-b) late fusion 63.7
(5-a) + (5-b) + (5-c) late fusion 65.6

4

