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Abstract

Convolutional neural networks (CNNs) have been studied for a long time, and re-
cently gained increasingly more attention. Deep CNNs have especially achieved remark-
ably high performance on many visual recognition tasks due to their high levels of flexi-
bility. However, since CNNs require numerous parameters to be tuned via iterative oper-
ations through layers, their computational cost is immense. Moreover, they often require
a huge number of training samples and technical tricks, such as unsupervised pretraining
and heuristic tuning, to successfully train the system.

In this work, we present a very simple method of layer-wise convolution. We can ob-
tain discriminative filters by using a Fisher weight map, which well separates convolved
images between categories. This operation can be deterministically solved as a simple
eigenvalue problem and no back propagation or hyper-parameters are needed. Because
our method is layer-wise and based on a simple eigenvalue problem, it is computation-
ally efficient. Also, it is relatively stable with a moderate amount of training samples
and is capable of learning densely from high-dimensional descriptors without dropping
connections between neurons, which is a common practice in conventional implementa-
tions of CNNs. We demonstrated the promising performance of our method in extensive
experiments with two datasets. Our network used together with appropriate pooling and
rectification techniques achieved remarkably high performance that was distinctly com-
parable to those that were state-of-the-art.

1 Introduction
Deep neural networks are again gaining popularity in visual categorization tasks with the
significant advances in computational power and the amount of data [11, 15]. Of these, con-
volutional neural networks (CNNs) [18, 22, 27] are one of the most successful approaches
and have established state-of-the-art records in many benchmarks [4, 19, 20]. CNNs have
limited the connections between layers just within nearby neurons in sub-windows (receptive
fields) inspired by biological analysis of the visual cortex [17]. Moreover, the weight param-
eters for convolution have been shared by all sub-windows. Thus, CNNs have substantially
reduced the number of free parameters compared to fully-connected networks.

However, CNNs still have a number of disadvantages. First, their computational cost
is still immense and they usually require special implementation using graphics process-
ing units (GPUs) or cluster computers to achieve state-of-the-art results [4, 19]. Since it is
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occasionally difficult for even GPUs to train fully connected CNNs, connections are often
randomly reduced so that training is feasible [3, 18]. CNNs are also prone to overfitting due
to their high level capacities. We generally require a huge number of training samples to suc-
cessfully train systems without the help of unsupervised pre-training [10, 24]. In addition,
heuristic techniques such as dropouts [16] are often incorporated, although their theoretical
background has not been fully investigated.

In this work, we present a very simple but efficient method of convolution using a weight
learning method called the Fisher weight map (FWM). We can obtain weights for features
that well separate convolved images between categories. This operation can be determin-
istically solved as a simple eigenvalue problem and no hyper-parameters for back propa-
gation (e.g. weight decay) are needed. Because our method is layer-wise and based on a
simple eigenvalue problem, it is computationally efficient. It does not need unsupervised
pre-training and it is relatively stable with a moderate number of training samples.

We demonstrated in extensive experiments that our convolution method could reason-
ably improve the performance of the original descriptors. Moreover, we found that the key
to achieving the best performance was to use it with appropriate methods of pooling and rec-
tification, which is another contribution we made. Our overall network achieved surprisingly
high-performance comparable to that of state-of-the-art ones, despite its simplicity.

2 Fisher weight map
The Fisher weight map (FWM) was originally proposed by Shinohara and Otsu [26] for
computing spatial weights for individual pixels in images, and had its roots in Eigenface [28]
and Fisherface [1]. While Eigenface and Fisherface simply perform principal component
analysis (PCA) or Fisher linear discriminant analysis (FLDA) on image vectors, FWM is
designed for a 2-dimensional (matrix) representation, where each pixel has multiple feature
channels. FWM specifically computes weights for each pixel such that they maximize the
Fisher criterion of the global feature vector. Its core algorithm is based on FLDA, and is
a natural extension of the eigen weight map (EWM) [26], which is based on PCA. This
idea has recently been revisited by Harada et al. [13, 14], who used FWM and other similar
techniques to obtain weights for each region of spatial pyramids. Despite its substantially
reduced dimensionality, their compact spatial pyramid representation was found to be as
powerful as other state-of-the-art methods of pyramid matching.

In this work, we implement the FWM with the opposite approach that is suitable to
convolute local features. Although the mathematical basis of FWM comes directly from
[26], the objective here is essentially different and has not been investigated, making our
contribution novel. More specifically, we compute weights for features of local neighboring
pixels in receptive fields that maximize the discriminative ability of the convolved image
map (Section 3.1), while the objective of [26] is to compute discriminative global features.

3 Network architecture
We consider a multilayer feedforward network for image classification (Figure 1). At the
k-th layer (Lk) of the network, each image is represented by mk feature arrays of Pk × Pk

pixels. This 2-dimensional array and its elements are often called a “map” 1 and “neurons”.
For example, a raw color image (L0) has three maps, each of which corresponds to R, G,
and B channels. We extract local features from image patches with standard descriptors that
constitute the L1 layer. They are further followed by pooling and convolution layers. Finally,

1The definition of a “map” here is totally unrelated to that for the Fisher weight map or eigen weight map.
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Convolutions using Fisher weight map
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Figure 1: Illustration of our network. No back propagation is necessary for training.

a logistic regression classifier is trained using all neurons in the final layer as input. Our
main contribution is the implementation of convolution layers using weight map techniques,
which we describe in the following.

3.1 Convolution with weight maps
Figure 2 outlines our algorithm. Let f (k)

(x,y) ∈ Rmk denote the feature vector of coordinates
(x, y) at the Lk-th layer, each element of which corresponds to the response of each map.
We first stack neighboring feature vectors for convolution in a receptive field. For n × n
convolution, we concatenate n2 vectors as

x(k)
(x′,y′) =

(
f (k)T
(x−δ,y−δ) f (k)T

(x−δ+1,y−δ) · · · f (k)T
(x+δ,y−δ) · · · f (k)T

(x,y) · · · f (k)T
(x+δ,y+δ)

)T
, (1)

where δ = bn/2c and (x′, y′) are new coordinates for convolved images. After this operation
is densely applied, we obtain (Pk − n + 1) × (Pk − n + 1) stacked vectors. We place them
together as a matrix as

X =
(
x(k)

(1,1) x(k)
(2,1) · · · x(k)

(Pk−n+1,Pk−n+1)

)
. (2)

Our objective is to find a linear projection, f (k+1)
(x′,y′) = wT x(k)

(x′,y′)(w ∈ Rmk×n2
), that convolves

all local features in a receptive field to derive a new map that embeds informative local
structures. Both EWM and FWM are formulated as an eigenvalue problem to achieve this
end. We obtain convolving projection that defines the next maps by using the top mk+1
eigenvectors as(

f (k+1)
(1,1) f (k+1)

(2,1) · · · f (k+1)
(Pk−n+1,Pk−n+1)

)
=

(
w1 w2 · · · wmk+1

)T (X − X̄), (3)

where X̄ is the mean matrix of X in the entire training dataset. Below, we describe two
weight map techniques that we tested in the experiments.
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Figure 2: Convolution with weight maps (FWM or EWM).

Eigen weight map
Let z = XT w denote a convolved map vector via projection w. EWM finds the projection
that maximizes the variance of z. The variance criterion, JE(w), is written as

JE(w) =
1
N

N∑
i=1

(zi − z̄)T (zi − z̄) (4)

= wT

 1
N

N∑
i=1

(Xi − X̄)(Xi − X̄)T

 w (5)

= wT ΣXw, (6)

where N is the total number of training samples and z̄ is the mean vector of zi. The op-
timal projection that maximizes JE(w) under constraint wT w = 1 can be obtained as the
eigenvector of the following eigenvalue problem

ΣXw = λw. (7)

Fisher weight map
FWM finds discriminative projections by maximizing between-class distance of z. While
EWM is an unsupervised method, FWM maximizes the Fisher criterion, JF(w), in a super-
vised manner to separate categories. Therefore, it is expected to work better than EWM
in terms of classification. Let Σ̃W and Σ̃B correspond to the within-class and between-class
covariance matrices of z, respectively. More specifically,

Σ̃W =
1
N

C∑
j=1

N j∑
i=1

(z( j)
i − z̄( j))(z( j)

i − z̄( j))T , (8)

Σ̃B =
1
N

C∑
j=1

N j( z̄( j) − z̄)( z̄( j) − z̄)T , (9)
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where C is the number of categories, N j is the number of training samples in class j, z( j)
i is

the i-th sample in class j, and z̄( j) is their mean. The traces of Σ̃W and Σ̃B can be written as

trΣ̃W =
1
N

C∑
j=1

N j∑
i=1

(z( j)
i − z̄( j))T (z( j)

i − z̄( j)) (10)

= wT

 1
N

C∑
j=1

N j∑
i=1

(X( j)
i − X̄( j))(X( j)

i − X̄( j))T

 w (11)

= wT ΣWw. (12)

trΣ̃B =
1
N

C∑
j=1

N j( z̄( j) − z̄)T ( z̄( j) − z̄) (13)

= wT

 1
N

C∑
j=1

N j(X̄( j)
− X̄)(X̄( j)

− X̄)T

 w (14)

= wT ΣBw. (15)

Therefore, the Fisher criterion is defined as

JF(w) =
trΣ̃B

trΣ̃W
=

wT ΣBw
wT ΣWw

. (16)

The optimal weights that maximize the above can be analytically obtained by solving the
following eigenvalue problem.

ΣBw = λΣWw. (17)

If the dimensions of ΣW are too large, we can apply EWM before FWM to reduce dimen-
sionality to cope with the singularity problem [26], although we have not done this in this
study.

3.2 Descriptors
We test two descriptors to extract layer-1 features from raw images.

The first is the Random Filter, which convolves small image patches (e.g., 3x3 and
5x5) with random weights. The weights are set randomly between -0.05 to 0.05 in our
experiments. Previous work has shown that deep networks with random weights achieve
reasonable performance despite their simplicity [18]. Also, they are frequently used as the
initial weights for deep CNNs.

The second is the K-means encoding proposed by Coates et al. [5, 8]. We first apply con-
trast normalization and zero component analysis (ZCA) whitening to image patches as pre-
processing. We then generate a codebook using the K-means as in the standard bag-of-words
approach [9]. We use triangular encoding to encode patch features using the codebook.

3.3 Pooling
Pooling is an operation to summarize the responses of neighboring neurons in a map by
obtaining their statistical properties. In this way, we can systematically incorporate local
translation invariance, which is crucially important for visual object recognition. This was
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often done in early work via simple sub-sampling [27]. Recent studies have commonly been
based on dense pooling operations [4, 5, 29]. Here, we use average-pooling (AP) and max-
pooling (MP), which have recently been theoretically analyzed by Boureau et al. [2].

3.4 Rectification
One of the keys to deep networks is to incorporate nonlinearity by applying an appropriate
rectification function to the output of neurons. Many functions have been tested for this pur-
pose such as the tanh and sigmoid [18, 22]. Recent state-of-the-art research has demonstrated
that the Rectified Linear Units (ReLU) function, which simply takes R(x) = max(0, x) for
input x, is surprisingly effective for deep networks, leading to high levels of performance and
fast convergence [19, 23]. Although our architecture does not need backward propagation,
we implemented ReLU to check its effectiveness. Motivated by Coates and Ng [7], we also
tested the following two-dimensional rectification units to similarly exploit minus activation
obtained from convolution.

R2(x) =

(
max(0, x)

max(0,−x)

)
. (18)

4 Experiment
We compared our methods using various pooling and rectification strategies on two bench-
marks, i.e., the STL-10 [5] and MNIST [21] datasets. The notations of network architectures
are

• Rand(n, d): a d-dimensional random filter applied to n × n image patches,

• Km(n, d): a K-means descriptor extracted from n×n image patches with d visual words,

• C(n,m): a convolutional layer with m maps and n × n receptive fields. CE and CF

correspond to the convolution with EWM and FWM,

• R, R2: Rectification unit (ReLU, Section 3.4),

• AP[MP](n, s): Average-pooling [Max-pooling] over n × n neighborhood spacing s
pixels apart, and

• AP[MP]q: Average-pooling [Max-pooling] such that pooled regions correspond to the
quadrants (2 × 2 spatial regions) of original raw images.

For example, Rand(5, 200)-R-AP(4, 4)-CF(3, 100)-R-APq represents the following architec-
ture: (1) 200 random filters, followed by (2) ReLU, (3) average pooling, (4) 100 maps of
3 × 3 convolution using FWM, (5) ReLU, and (6) average pooling. We can carry out a fair
comparison to check the effectiveness of each step by using quadrants (APq, MPq) as the
final layer. All the experiments were done on a single desktop PC (Core-i7 3930K with 32
GB of RAM).

4.1 STL-10 dataset
The STL-10 [5] dataset is composed of 96 × 96 color images of 10 object classes such as
airplanes, birds, and cars. This dataset has especially been designed to investigate problems
with unsupervised feature learning. While 100,000 unlabeled images are available for this
purpose, there are only 100 labeled examples per class for each predefined fold. We ignored
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Table 1: Classification rates on STL-10 (%) using various network architectures.
Architecture Accuracy
Km(9, 200)-APq 46.7 ± 1.7
Km(9, 200)-MPq 53.4 ± 0.7

EWM FWM
Km(9, 200)-AP(4, 2)-C(3, 100)-MPq 45.2 ± 0.9 45.6 ± 1.6
Km(9, 200)-MP(4, 2)-C(3, 100)-MPq 49.3 ± 0.6 48.0 ± 1.3
Km(9, 200)-AP(4, 2)-C(3, 100)-APq 45.2 ± 1.8 55.8 ± 1.1
Km(9, 200)-MP(4, 2)-C(3, 100)-APq 54.6 ± 0.9 58.0 ± 0.8
Km(9, 200)-AP(4, 2)-C(3, 100)-R-APq 50.9 ± 0.9 57.7 ± 0.7
Km(9, 200)-MP(4, 2)-C(3, 100)-R-APq 54.9 ± 0.6 59.0 ± 0.5
Km(9, 200)-MP(4, 2)-C(3, 100)-R2-APq 56.9 ± 0.4 61.2 ± 0.6

Table 2: Classification rates on STL-10 (%) using FWM with different numbers of features
and network configurations.

hhhhhhhhhhhhhhhArchitecture
Dictionary size (d)

200 500 1000

Km(9, d)-MPq 53.4 ± 0.7 56.5 ± 0.7 57.9 ± 0.6
Km(9, d)-MP(4, 2)-CF(3, 100)-R-APq 59.0 ± 0.5 60.9 ± 0.9 61.9 ± 0.6
Km(9, d)-MP(4, 2)-CF(3, 100)-R2-APq 61.2 ± 0.6 62.5 ± 0.7 63.3 ± 0.4
Km(9, d)-MP(8, 4)-CF(3, 100)-R-APq 60.4 ± 0.9 62.0 ± 0.9 63.1 ± 0.7
Km(9, d)-MP(8, 4)-CF(3, 100)-R2-APq 62.2 ± 0.8 63.6 ± 0.7 64.6 ± 0.4
Km(9, d)-MP(8, 4)-CF(3, 100)-R2-AP(4, 3) 64.2 ± 0.7 65.4 ± 0.7 66.0 ± 0.7

Table 3: Comparison of classification rates on STL-10 (%).
1-layer Vector Quantization [7] 54.9 ± 0.4
1-layer Sparse Coding [7] 59.0 ± 0.8
3-layer Learned Receptive Field [6] 60.1 ± 1.0
Discriminative Sum-Product Network [12] 62.3 ± 1.0
Ours, Km(9, 1000)-MP(8, 4)-CF(3, 100)-R2-AP(4, 3) 66.0 ± 0.7

unlabeled samples in this experiment and simply trained our system with labeled examples
as in Gens and Domingos [12].

We first tested various combinations of convolution and pooling operations with K-means
features using 200 visual words. Table 1 summarizes the results. We could obtain a stan-
dard bag-of-words representation (Km(9, 200)-AP[MP]q) by simply pooling the descriptors.
Max-pooling achieved better performance than average-pooling for this dataset. After the
convolution layer, however, average-pooling substantially improved performance from non-
convolution models, while max-pooling had no effect at all. Moreover, we found that ReLU
after convolution could consistently improve performance; the R2 filter was found to be espe-
cially effective. These results indicated that it was crucial to use our methods of convolution
with adequate pooling and rectification techniques. Both EWM and FWM outperformed
the Km(9, 200)-MPq model when used with average-pooling and the R2 filter. As expected,
FWM, which is a discriminative convolution layer, achieved the best results.

We next fine-tuned our model with more features as in Table 2. We found that our method
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Table 4: Classification errors on MNIST (%) using various network architectures.
Architecture Error
Rand(5, 500)-APq 14.57
Rand(5, 500)-MPq 1.02
Rand(5, 500)-R-APq 0.89
Rand(5, 500)-R-MPq 1.02

EWM FWM
Rand(5, 500)-R-MP(3, 2)-C(3, 200)-APq 4.13 2.49
Rand(5, 500)-R-AP(3, 2)-C(3, 200)-APq 3.33 2.06
Rand(5, 500)-R-AP(3, 2)-C(3, 200)-R-APq 0.95 0.67
Rand(5, 500)-R-AP(3, 2)-C(3, 200)-R2-APq 0.90 0.54

Table 5: Classification errors on MNIST (%) using different size and feature dimensionality
of receptive fields.

Rand(5, d)-R-AP(3,2)-CF(n,100)-R2-APq
H
HHHHn

d
100 200 300

1 1.09 (100) 0.86 (200) 0.73 (300)
2 0.68 (400) 0.68 (800) 0.63 (1200)
3 0.69 (900) 0.66 (1800) 0.61 (2700)
4 0.71 (1600) 0.60 (3200) 0.56 (4800)
5 0.62 (2500) 0.56 (5000) 0.52 (7500)

of convolution could successfully learn weight parameters from more features without over-
fitting, although there were only 100 labeled examples per class. Moreover, we could further
improve performance by using a finer grid for the last pooling layer (AP(4, 3)) instead of
quadrants. We have compared the scores for our method and previous ones in Table 3. Our
best model outperformed all previously published scores in the literature by a large margin.

4.2 MNIST dataset
MNIST is a dataset of tiny (28 × 28 pixels2) handwritten digits, and has been a de-facto stan-
dard for the study of deep networks. There are 60,000 training samples and 10,000 testing
samples in this dataset. Approximately 6,000 training and 1,000 testing samples are spec-
ified per class (0 to 9). We found that random filters worked well for this dataset. Table
4 summarizes classification error using different combinations of convolution and pooling
methods. It was somewhat surprising that just applying ReLU and average-pooling could
greatly improve performance (Rand(5, 500)-R-APq). After convolution, however, perfor-
mance fell without the help of ReLU. The results basically correspond to those for STL-10,
but ReLU appears to be more important for this dataset. Also, EWM, unlike in STL-10, does
not improve performance from the original random features.

We next investigated what effects the size of the receptive field and dimensionality of
features had on convolution. Table 5 lists the results. The numbers in parentheses represent
the number of features in a receptive field for each case. We observed that the key factor was

2We append one column and one row with zeros so that images are 29 × 29.
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Table 6: Classification errors on MNIST (%) with best configurations.
hhhhhhhhhhhhhhhhArchitecture

Filter dimensions (d)
200 500 1000

Rand(5, d)-R-APq 1.02 0.89 0.87
Rand(5, d)-R-AP(3, 2)-CF(3, 200)-R-APq 0.67 0.66 0.67
Rand(5, d)-R-AP(3, 2)-CF(3, 200)-R2-APq 0.55 0.54 0.47
Rand(5, d)-R-AP(3, 2)-CF(3, 500)-R2-APq 0.57 0.47 0.44

Table 7: Comparison of classification errors on MNIST (%). We compared our method with
previous work using raw training dataset. (*) Ciresan et al. [4] achieved 0.23% using elastic
distortions.

Large CNN (unsup. pretraining) [25] 0.60
Large CNN (unsup. pretraining) [18] 0.53
3-layer CNN + Stochastic Pooling [29] 0.47
Multi-Column Deep Neural Network [4] 0.46∗

Ours, Rand(5, 1000)-R-AP(3, 2)-CF(3, 500)-R2-APq 0.44

the number of features in a receptive field, rather than its size. Based on this, we increased
the dimensions of features fixing n = 3 (Table 6) and effectively obtained better scores.

Table 7 summarizes our comparison with previous work. State-of-the-art work on this
dataset used augmented training data with various distortions on original images. Because
this was not of interest in this work, we compared our method with previous scores for the
original raw dataset. To the best of our knowledge, the best previous score with this setup
(no distortion) was that by Ciresan et al. [4], which was based on the combination of five
CNNs. We achieved 0.44% using a single network with a FWM convolution layer with 500
maps. Also Zeiler and Fergus [29] achieved 0.47% using a novel technique of pooling called
stochastic pooling with CNNs. It would be interesting to implement stochastic pooling in
our network, which we intend to do in future work.

5 Conclusion
We presented a simple but efficient method of layer-wise discriminative convolution based
on a Fisher weight map. Our method of convolution can be analytically solved and no
hyper-parameters for backward learning are needed. The experimental results revealed that
our convolution layer could reasonably improve the performance of the original descriptors.
However, we also found that just using FWM for convolution was insufficient to obtain
the best performance. Our method, used together with appropriate pooling methods and
ReLU operations, achieved remarkably high levels of performance on STL-10 and MNIST
datasets that were comparable or better than those of state-of-the-art networks. Superior
results on STL-10 especially indicated that our method could stably learn from a limited
number of training examples. This is probably because our method is based on a simple
eigenvalue problem and is capable of densely learning from high-dimensional descriptors
without dropping connections between neurons. This fact indicates the importance of fully-
connected convolutional networks, considering that connections are often reduced in many
other CNN methods.
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We intend to extend our method to handle hierarchical convolution in future work. More-
over, it would be interesting to initialize deep networks with our method and fine tune them
with state-of-the-art methods of gradient descent.
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