
AI Goggles: Real-time Description and Retrieval

in the Real World with Online Learning

Hideki Nakayama Tatsuya Harada Yasuo Kuniyoshi

Dept. of Mechano-Informatics, Grad. School of Information Science and Technology,

The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

{nakayama, harada, kuniyosh}@isi.imi.i.u-tokyo.ac.jp

Abstract

In this paper, we present the AI Goggles system, which

can instantly describe objects and scenes in the real world

and retrieve visual memories about them using keywords

input by the users. This is a stand-alone wearable sys-

tem working on a tiny mobile computer. Also, the system

can quickly learn unknown objects and scenes by teaching

and learn to label and retrieve them on site, without loss of

recognition ability for previously learnt ones.

As the core algorithm of the system, we propose and im-

plement a new method of multi labeling and retrieval of un-

constrained real-world images. Our method outperforms

the current state-of-the-art method, in terms of both ac-

curacy and computation speed on the standard benchmark

dataset. This is a major contribution to development of vi-

sual and memory assistive man-machine user interface.

1. Introduction

Recently, an increasing number of studies have been con-

ducted on “life logs.” This research field aims to constantly

record and analyze real-world information (typically visual

information) that we observe in daily life autonomously [6].

The realization of such a system is an extremely impor-

tant challenge, not only from a scientific standpoint con-

cerned with human behavior, but also from a practical one.

It would have widespread applications, such as memory as-

sistance/organizer and vision aid (visual dictionary).

In order to realize such a system, it is rational to extract

exactly the same images of user’s view and record them

(Fig. 1) because our eyesight reflects our intention. Also,

it is appropriate to mount the system on a daily-used item

such as glasses or goggles because these systems are ex-

pected to be implemented into a wearable system and natu-

ral enough not to disturb daily life. Considering the current

improvements in computers and hardware, it is not difficult
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Figure 1. Implementation of the AI Goggles

system.

to assume that the whole system will be embedded in nor-

mal glasses in the future.

However, a mere image log is awkward and difficult for

end users to handle effectively. In order to recall some in-

formation efficiently, it is desirable that images are tagged

with some labels so that the user can retrieve necessary in-

formation by using the labels, as in an internet search query.

In other words, the system needs to automatically recognize

the semantic content of the images and store them with ap-

propriate symbols. This is an extremely difficult problem

due to the ambiguity of real world images, and the complex

process used by humans to assign symbols to them.

Humans have a powerful ability to near-instantaneously

recognize very complex scenes and objects in the visual

field. We act in a range of differing situations and need to

recognize an enormous number of generic objects. In addi-

tion to identifying names of objects and places (noun), it is

also necessary to obtain descriptive and impressionistic (ad-

jective) information about images. In order to realize this
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ambiguous processing on computers, we need a highly ver-

satile and sophisticated algorithm of generic object recog-

nition, which can extract multiple meanings from images.

Furthermore, because recognition is a subjective process,

different people may provide very different labelings of the

same scene. Therefore, desirable symbolization depends on

each user’s life and is not apparent. Thus the labeling policy

of the system should be able to adapt to each user. Also, we

cannot implement all necessary knowledge to the system in

advance because there are an infinite number of objects and

scenes in the real world. For these reasons, online learning

function is extremely important for user-adaptive systems.

Today, numerous studies are under way to realize au-

tomatic image recognition. Probably the most promising

framework for generic object recognition with multi label-

ing is that of the image annotation and retrieval research

field [11, 5, 4, 2], which is based on a statistical machine

learning framework. Its goal is to attach multiple labels to

unknown input images (annotation), and to search for unla-

beled images that best correspond to text queries input by

user (retrieval). This framework allows images to be multi-

ply labeled, with any set of symbols desired by the users. In

this sense, this scheme best meets the need of our system.

However, previous methods in image annotation field

are not sufficiently accurate, and furthermore, they need

tremendous amounts of computational resources (e.g.,

SML [2], which is at the top on Corel image dataset [4] in

2007, needs a cluster of 3,000 PCs for computation). For the

applications described in this paper, instantaneous recogni-

tion and retrieval is crucial because the system must deal

with an environment that varies from hour to hour in real

time. This requirement is difficult to meet, as the computa-

tional resources of wearable systems are often strictly lim-

ited. Also, previous methods do not consider the case where

additional symbols are added to the system after the initial

training period. Therefore, it has so far been effectively im-

possible to apply previous methods of image annotation and

retrieval to the real-world applications mentioned above.

2. AI Goggles

In this paper, we present the AI Goggles system, which is

a wearable system capable of describing generic objects in

the environment and retrieving the memories of them using

visual information in real time without any external com-

putation resources. Our system is also capable of learn-

ing new objects or scenes taught by users. This ability

further enhances man-machine interaction and makes our

system practical. As the core of the system, we develop

a high-accuracy and high-speed image annotation and re-

trieval method supporting online learning. We show that

our method is superior to previous methods in quantitative

evaluation experiments.

Figure 1 shows the implementation of the AI Goggles

system. This system is composed of a web camera mounted

on the goggles, a head mount display (HMD), and a tablet

PC (CPU: Core2Duo 1.2 GHz; Memory: 2 GB). C++ lan-

guage is used for implementation. Figure 2 shows the over-

all view of the system. The system continuously extracts

an image of the user’s view from the web camera, anno-

tates the image using the proposed annotation method, and

then displays the annotation result on the HMD. At the same

time, the system accumulates the image and corresponding

annotation result to a vision log. When it receives a search

query from the user, it finds appropriate movies in the vi-

sion log and displays them on the HMD. In addition, it can

incrementally learn objects and scenes taught by the user on

sight. Figure 3 shows the GUI of the system. A large image

at top-left is the camera image (user’s view), and red texts

in center are the corresponding annotation. Five small im-

ages at the bottom are thumbnails of retrieved images from

memory, corresponding to the query showed above. When

the user clicks them, the system shows a sequence of images

around the time they were recorded.

We review some closely-related previous studies based

on generic image recognition techniques. Schiele et al.

[13] had proposed a similar memory-assistive system using

visual triggers. They built a museum’s guide as a practi-

cal application. However, their interface is built on query-

by-example scheme and does not provide keyword search.

Also, it has been argued that it is difficult to overcome

semantic-gap [14] by query-by-example scheme. For these

reasons, it can be said that semantic aspects of their system

are not enough.

Torralba et al. [15] had proposed a wearable system

that performs versatile objects and scene recognition. Their

system can recognize scenes such as “room,” “corridor,”

“road,” and representative objects from the scenes. Nev-

ertheless, because they need to train a large-scale graphical

model, it is expected that it will face practical issues when

the number of target objects increases; for example, com-

putational time for learning will be excessively large. In

addition, their system does not support online learning.

In contrast, our method is extremely light, in terms of

both learning and recognition. Our system can recognize a

wide range of generic objects in real time and enables re-

experiencing of the memory through our image annotation

and retrieval method. Besides, it supports online learning

of unknown objects, which is a crucially important function

for a practical application.

3. Proposed Image Annotation and Retrieval

Method

In this section, we describe our method of image anno-

tation and retrieval [12], which is the core of our system.
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Figure 3. Graphical User Interface of the AI Goggles system.

3.1. Approaches

In previous studies on image annotation and retrieval,

there have been mainly two approaches. Supervised Mul-

ticlass Labeling (SML) [2], which achieves the best perfor-

mance on the Corel dataset [4] as of 2007, estimates the

relevance of image and word class directly as Fig. 4 (a).

However, because the image feature distribution of a certain

word has a complicated structure in general, their probabil-

ity density functions become also highly complex. For this

reason, it takes a lot of time to learn the model. Also, it is

difficult to control generalization.

On the other hand, another approach has been studied

which assumes an intermediate latent node between images

and words as Fig. 4 (b). This node expresses the essential

hidden state responsible for generating both the image and

the words. It has been shown that this model can perform

learning and annotation efficiently. Translation-model [4],

CRM [11], and MBRM [5] are typical works. However, the

problem is that these methods basically estimate the latent

space only from image features and ignore the semantic as-

pects.

In this study, we use Canonical Correlation Analy-

sis (CCA) to learn the latent variable. Although there is

some previous work using CCA for image annotation [7],

mere use of CCA loses the information of non-linear distri-

bution in the latent space because CCA is basically a linear

approximation technique and does not provide a probabilis-

tic scheme. Our proposed method can efficiently exploit the

non-linear structure by sample-based approach with a prob-

abilistic basis [1]. One of the other approaches to exploit the

non-linearity is the use of kernelised methods [7, 8]. How-

x w x w

z

(a) (b)
image word wordimage

latent
node

Figure 4. Two approaches to the annota-

tion/retrieval problem.

ever, scalability of kernelised methods are barely tractable

because they need to solve eigenvalue problems whose di-

mensions are the number of training samples. Also, it is

difficult to control generalization.

3.2. Latent Variable Learning between Im-
age and Labels via CCA

Here, we have p dimensional image features x =
[x1, x2, ..., xp]

T and q dimensional label features w =
[w1, w2, ..., wq]

T . We describe the training data as

{(xi, wi)|i = 1, ..., N} and the covariance matrix as C =
(

Cxx Cxw

Cwx Cww

)

. CCA finds the linear transformation si =

AT
xi, ti = BT

wi to maximize the correlation between

the new values (canonical values), si and ti. Optimal pro-

jection matrices A and B can be obtained explicitly as the

solution of the following generalized eigenvalue problems.

CxwC−1
wwCwxA = CxxAΛ2 (AT CxxA = Id), (1)

CwxC−1
xx CxwB = CwwBΛ2 (BT CwwB = Id), (2)
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Here, Λ2 is a diagonal matrix of eigenvalues. The square

root of the eigenvalues is the correlation between the canon-

ical values s and t. d is the dimension of s and t. We can

obtain d eigenvectors in the descending order of the eigen-

values.

According to probabilistic CCA [1] viewpoints, the

graphical model for CCA has a structure shown in Fig. 5;

note the similarity to Fig. 4(b). z in this figure represents

a latent variable, and is intimately related to s and t. The

relationship between s, t and the latent variable z can be

obtained as follows using the posterior expectation of z on

the probabilistic CCA: E(z|x) = GT
x s, E(z|w) = GT

wt,

where Gx, Gw are arbitrary matrices such that GxGT
w = Λ.

Here, we select an identity matrix as Gx. That is, we take s

as the latent variable z.

The optimal annotation w for an image x is the one

that maximizes posterior probability p(w|x). By using

{s}N
i=1 as the latent variable, the posterior probability can

be marginalized as follows;

p(w|x) =

∑N

i=1
p(x|w, si)p(w|si)p(si)
∑N

i=1
p(x|si)p(si)

,

=

∑N

i=1
p(x|si)p(w|si)

∑N

i=1
p(x|si)

. (3)

The simplification p(x|w, si) = p(x|si) can be ob-

tained using the assumption of the conditional indepen-

dence. In the absence of any task knowledge we use a uni-

form prior p(si) = 1/N , so we obtain Eq. (3).

Given a new image xnew, we calculate the posterior

probabilities p(wi|xnew) of all candidate words {wi}q
i=1

.

We then annotate the new image xnew as wi in descending

order of these probabilities.

In retrieval, we use the maximum likelihood estimation.

We let {Ii} denote the candidate images and {xi} their im-

age features. Given a query wnew as an input, we calculate

the likelihood p(wnew |xi) of all Ii according to Eq. (3),

and then output the candidate images in descending order

of likelihood. In this way, we can obtain a ranked retrieval

of the query.

3.3. Density Functions

The density function of posterior probability p(x|si) in

Eq. (3) can be calculated using the distance in canonical

space. We denote s = AT
x as the projected point in canon-

ical space of the image x. We define the posterior probabil-

ity as

p(x|si) =
exp

(

− 1

2
(s − si)

T Σ−1(s − si)
)

√
2π

d√|Σ|
. (4)

Here, Σ = βId. We can control the smoothness of the

posterior density distribution by setting the band width β
appropriately. Moreover, compared to the image-features

space, the dimension of canonical space is highly com-

pressed. Thus, we can reduce computational costs consid-

erably.

We design p(w|si) in a top-down manner using lan-

guage models. In previous research, CRM [11] and

MBRM [5] have used such language models. Here, we use

a model that builds on these previous models.

p(w|si) =
∏

w∈w

pW (w|si), (5)

pW (w|si) = µδw,si
+ (1 − µ)

Nw

NW

, (6)

where, scalar w denote each element of w. Also, NW is

the total number of labels in the training data set, Nw is the

number of the images that contain w in the training data

set, δw,si
is one if the label w is annotated in the image si

otherwise zero. µ is a parameter between zero and one.

3.4. Online Learning

Here we describe the algorithm of incremental learning

of new training samples. The core of our algorithm is CCA,

so the main problem is how to derive incremental CCA.

One obvious method is to use the classical perceptron

algorithm [10]. However, to get discriminative power in this

approach, we need to sequentially input all target objects

into the system evenly. In a practical situation it is natural to

give the system a large batch of samples of a certain object

all at once, so this assumption is invalid. Also, it is quite

difficult to use this approach if the dimension of the feature

vector increases. Thus, it is almost impossible to learn a

new label.

Therefore, we implement a simple form of incremental

CCA that incrementally estimates only covariance matrices.

This method needs to solve an eigenvalue problem every

time. However, unlike kernelised methods [7, 8], the di-

mension of our eigenvalue problem is that of image and la-

bels features. Therefore, computational cost of solving the
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eigenvalue problem is constant against the number of sam-

ples and is generally quite smaller than the cost of calculat-

ing covariance matrices (see Sec. 5.2). Also, this approach

can deal with the case in which the dimension of features

increases.

Suppose we already have t training samples, and mean

vector, correlation matrices, covariance matrices of them.

We let m(t), R(t), C(t) denote them respectively. When

a new training sample {xt+1, wt+1} is given, we update

mean and covariance as follows.

mx(t + 1) =
t − l

t + 1
mx(t) +

1 + l

t + 1
xt+1,

Rxx(t + 1) =
t − l

t + 1
Rxx(t) +

1 + l

t + 1
xt+1x

T
t+1,

Cxx(t + 1) = Rxx(t + 1) − mx(t + 1)mT
x (t + 1),(7)

where l is a positive number that determines the weight of

a new sample. We update Cww and Cxw likewise. When

l = 0, the resultant covariance matrices and CCA solution

become exactly the same ones obtained from batch process.

When a new label is added, the update algorithm slightly

changes as follows. A new label feature corresponding to

the new label is added to the tail of original label features

vector.

mw(t + 1) =
t − l

t + 1

(

mw(t)
0

)

+
1 + l

t + 1
wt+1,

Rww(t + 1) =
t − l

t + 1

(

Rww(t) 0

0 0

)

+
1 + l

t + 1
wt+1w

T
t+1,

Rxw(t + 1) =
t − l

t + 1

(

Rxw(t) 0
)

+
1 + l

t + 1
xt+1w

T
t+1.(8)

After updating covariance matrices, we can obtain new pro-

jection matrix A(t + 1) by solving Eq. (1). In incremental

learning, finding a good value of d (dimension of the canon-

ical space) is difficult because the structure of the canon-

ical space changes dynamically. Here, we set a threshold

for eigenvalues, and employ eigenvectors whose eigenval-

ues are greater than the threshold.

After updating the canonical space, we need to calculate

the hidden variable s again using A(t + 1). That is, si =
AT (t + 1)xi for all i ≤ t + 1.

It is worth noting that, in spite of the algorithm’s sim-

plicity, it is guaranteed to provide the same solution as the

batch process. This property makes our system highly sta-

ble, which is crucially important for realistic situation.

3.5. Image and Label Features

As the image feature, we use the color higher-order lo-

cal auto-correlation (Color-HLAC) features [9]. This is a

powerful global image feature for color images. In general,

global image features are suitable for realizing scalable sys-

tems because they can be extracted quite fast. Also, they

are well suited for weak labeling problem where we can-

not predict the location and the number of objects in input

images. The HLAC features enumerate all combinations

of mask patterns that define autocorrelations of neighbor-

ing points. In this paper we use at most the 1st order cor-

relations. Also, we extract Color-HLAC features from the

original images and weakly binarized images as described

in [12].

We use the word histogram as the labels feature. In this

work, each image is simply annotated with a few words, so

the word histogram becomes a binary feature [12].

4. Benchmark Test

We use the Corel5K dataset [4] to evaluate the perfor-

mance of the proposed method. This dataset contains 5000

pairs of the image and the labels, and has become the de

facto standard for the problem of image annotation with

multiple words. Each image is manually annotated with one

to five words. There are 4500 images in the training data set

and 500 images in the test data set. The training data has

371 words. 260 words among them appear in the test data.

We search the optimal parameters with 10-fold cross valida-

tion over the 4500 training data as in [12]. The experiment

is conducted on a commercially available PC (dual Xeon

2.66 GHz, eight cores) with C++ implementation.

4.1. Evaluation Protocol

For evaluation, we follow the methodology of previ-

ous works. The evaluation method of annotation is as fol-

lows. The recognition system annotates 500 test images

with 5 words each. These words are then compared with

the original ones. We obtain Mean-Recall (MR) and Mean-

Precision (MP). Because of the trade-off between these

two scores, we evaluate the total performance using the F-

measure: F-measure = 2×MR×MP
MR+MP

.

As for the evaluation of retrieval, the retrieval system

ranks all 500 test images for each testing word. We eval-

uate this performance with Mean Average Precision (MAP)

in two cases: the MAP over all 260 test words, and over the

words in which recall > 0 on annotation (MAP-RP).

4.2. Results

Table 1 shows the results obtained by the proposed

method and various previously proposed methods using

Corel5K. The proposed method outperforms the previously

published methods in both annotation and retrieval.
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Table 1. Performance comparison on
Corel5K.

MR MP F-measure MAP MAP-RP

CRM [11] 0.23 0.22 0.23 0.26 0.30

MBRM [5] 0.25 0.24 0.25 0.30 0.35

SML [2] 0.29 0.23 0.26 0.31 0.49

Proposed 0.32 0.25 0.28 0.32 0.58
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Figure 6. Layout of the experimental room.

4.3. Computational Costs

Here we compare the computational costs on the

Corel5K data set. SML [2], which got the best result, used

3000 state-of-the-art Linux machines in 2005, and takes one

hour for learning [2] and 280 seconds for the annotation

[3]. Our method takes just 5 seconds for learning (solv-

ing CCA), and takes 10 seconds for annotation over all 500

test images on an eight-core desktop PC. Though we can-

not propose clear comparison because hardware configura-

tions are different, it can be said that our method is faster

and more accurate than the previously published methods.

In particular, the improvement in computation speed is im-

mense. In this sense, our proposed algorithm is well suited

for the mobile application we aim at.

Also, the computational costs of our recognition method

and incremental learning method both increase in propor-

tion to the number of training samples N . However, we

emphasize that they can be perfectly parallelized because

they are instance-based methods and do not need sequential

estimation. This property is suitable for the trend of current

computer hardware.
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Figure 7. Examples of training data sets.
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Figure 8. Example of incremental learning.
The system newly learns PET bottle of green

tea.

5. Demonstration of AI Goggles

In this section, we test the performance of our system

in the real world. It is notable that the teaching phase is

conducted mainly through online learning of new objects.

After teaching the system, we actually wear the system and

perform real-time annotation and retrieval.

5.1. Experimental Environment

As the main environment, we set up an experimental

room simulating common life space (Fig. 6). We placed var-

ious objects ranging from large ones such as a desk, chair,

and table, to small ones such as books, clock, and photo-

graph (Figure 7 shows some representative ones). Also, we

test our system outside of the room and teach some land-

mark objects and scenes. Overall, we teach 106 labels in

the current setup.

As the initial training dataset, we capture some image

samples using the goggles in advance and hand-label each

of the samples with a few words. Figure 7 shows some

examples. This dataset contains about 5000 samples of just

40 labels in the experimental room. We teach a large part of

objects and scenes through online learning algorithm. The
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objective here is to test how our system can adapt to a whole

new environment (outside of the room).

5.2. Online Learning of New Objects

We show an example of teaching an unknown object to

the system on site (Fig. 8). First, we show the system a plas-

tic bottle of tea having green label. The system recognizes

it as “plant”, which has the most similar color in known ob-

jects. Next, we define new labels “PET” and “tea” for this

plastic bottle, and perform incremental learning of image

and label. Just after the user clicks the “START” button on

the GUI, the system calculates the proposed incremental al-

gorithm every frame until “STOP” button is clicked. As a

result, the system learns to recognize the plastic bottle in

just about 10 seconds. It is also able to distinguish it from

“plant” and “frog” learnt before, which have similar appear-

ance and are thought to be confusing.

Our incremental algorithm takes just 0.1 seconds on an

average for each frame to update the system in current

setup, where normal CCA (batch process) takes 2.87 sec-

onds. As these results show, our incremental algorithm

is quite fast and effective. This function enforces man-

machine interaction and leads to user-adaptive systems. It

is also important to overcome the high intra-class variation

of known objects.

5.3. Real-time Image Labeling and Re-
trieval

After completing learning, we actually wear the goggles

and attempt real-time recognition of objects in the environ-

ment. The vision log, which contains the image itself and

the posterior probability (value of Eq. (3)) of each word, is

saved at 1 fps. Figure 9 shows examples of the recognition

results. The upper two rows show the results in the exper-

imental room, and the last row shows those taken outside.

The posterior probabilities of each word are shown next to

the corresponding words. We set the threshold of posterior

probability to 0.40. The recognition result is the set of ob-

jects whose posterior probability exceeds this threshold. As

shown, the system succeeds in recognizing various generic

objects both in the experimental room and outside. It is re-

markable that though these two environments are consider-

ably different, the incremental learning in the outside envi-

ronment does not deteriorate the recognition performance in

the experimental room. These results indicate the powerful

and flexible recognition ability of the system.

We also attempt to retrieve images containing certain ob-

jects from the previously recorded vision log. Figure 10

shows some examples of retrieval, where the proposed sys-

tem could retrieve target images correctly from a vision log

containing many images. As “face” example shows, our

system can recognize various objects as “face”. In other

words, it can flexibly deal with the high intra-class varia-

tion. Also, our system permits multi-label retrieval. If we

input “face” and “frog” as the query, the system correctly

retrieves the target. Figure 11 illustrates a practical situa-

tion of retrieval. Suppose we cannot find a pair of pliers,

and want to know where it is now. Then we let the system

retrieve images of the pliers that we must have seen some-

where before. The system shows us a sequence of images

of the last time the pliers were seen. This informs us that

the pliers are currently in a drawer.
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Figure 10. Example of retrieval in the experi-
mental room.

retrieved  image

(thumbnail)

Click

Figure 11. An example of memory assistance.
The system retrieves a record of the last time

the pliers were seen.

6. Conclusion

In this paper, we presented the AI Goggles system,

which recognizes and retrieves various generic objects and

scenes present in the environment. Using the goggles, we

can retrieve what we have seen in the past using a search

query, just like an internet search. Also, it enables instant

learning of new objects and scenes. This ability further en-

hances man-machine interaction. We can optimize the la-

beling policy of the system flexibly according to the user’s

preference. Also, the system can adapt to a new environ-

ment as our experiment showed. This system may have

many practical applications, such as memory assistance, vi-

sual dictionary, automatic blog writer, and so on.

This system is implemented by the proposed image an-

notation and retrieval method. Our method outperforms

previous methods in terms of both accuracy and computa-

tional speed in multi-labeling task. In particular, the signif-

icant improvement in speed enables image annotation and

retrieval even in a tiny notebook computer. This makes it

possible for mobile systems to label and retrieve real-world

visual information instantly. We verified the effectiveness

of the method through experiments involving use of the AI

Goggles system in the real world.
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