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ABSTRACT
Cosegmentation is defined as the task of segmenting a com-
mon object from multiple images. Hitherto, graph match-
ing has been known as a promising approach because of
its flexibility in matching deformable objects and regions,
and several methods based on this approach have been pro-
posed. However, candidate foregrounds obtained by a lo-
cal matching algorithm in previous methods tend to include
false-positive areas, particularly when visually similar back-
grounds (e.g., sky) commonly appear across images.
We propose an unsupervised cosegmentation method based

on a global graph matching algorithm. Rather than using
a local matching algorithm that finds a small common sub-
graph, we employ global matching that can find a one-to-
one mapping for every vertex between input graphs such
that we can remove negative regions estimated as back-
ground. Experimental results obtained using the iCoseg and
MSRC datasets demonstrate that the accuracy of the pro-
posed method is higher than that of previous graph-based
methods.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Segmenta-
tion - regiongrowing, partitioning

General Terms
Algorithms
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1. INTRODUCTION
Constructing a visual knowledge base for image recogni-

tion from Web data has been studied actively in the field of
computer vision [1, 2]. While images on the Web relevant to
a specific visual concept are usually collected via text-based
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Figure 1: Process flows of previous typical methods (top)
and the proposed method (bottom). Given two images, (1)
each image is transformed into a graph composed of super-
pixels. (2) Visually similar regions (subgraphs) are paired
by global graph matching and (3) the subgraph representing
the foreground is extracted by connected component decom-
position. Finally, (4) the foreground is refined by GrabCut
using the subgraph as a seed.

image search engines, they often include miscellaneous back-
grounds that hamper the construction of a visual knowledge
base. Unsupervised cosegmentation is the technique of seg-
menting a common foreground (object region) from multiple
images and can be used for removing backgrounds irrelevant
to each visual concept to construct a high-quality knowledge
base.

Cosegmentation was first introduced by Rother et al. [3],
and a number of methods have been proposed since then.
Vicente et al. [4] proposed an unsupervised cosegmenta-
tion method in which the problem is formulated as an en-
ergy maximization problem that maximizes the similarity
between candidate regions of the object in input images;
they used random forest regression to obtain the similar-
ity score. Meng et al. [5] also proposed an unsupervised
cosegmentation method based on the shortest path prob-
lem. Hochbaum et al. [16] optimized an energy function
in polynomial time using a maximum flow procedure. Ru-
bio et al. [15] proposed a method based on Markov random
fields to extract a common object from multiple images by
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Figure 2: Illustration of the process to transform an im-
age into the graph. First column, second column and third
column show original images, superpixels obtained by SLIC
and the resultant graph.

minimizing an energy function that includes an inter-image
region matching term.
Among the many strategies for the cosegmentation prob-

lem, graph matching has been known as one of the best per-
forming approaches because of its high flexibility in match-
ing deformable objects and regions. Yu et al. [14] proposed
a graph-matching-based approach that transforms each in-
put image into a graph and obtains foreground regions by
a local graph matching algorithm that computes matches
with regard to only one common region from the input
graphs. This appears conceptually reasonable for the coseg-
mentation problem; however, a candidate foreground region
obtained by local matching tends to include background
slightly. Specifically, when visually similar backgrounds (e.g.,
sky, sea and grass) commonly appear across images, they are
also matched and may be included in the estimated fore-
ground.
In this paper, we propose an unsupervised cosegmentation

algorithm based on global graph matching. Using a global
graph matching algorithm that can compute both a small
common subgraph and one-to-one mapping for every vertex
between input graphs, we can find all paired regions and
remove ones those that seem to be background to obtain a
more accurate foreground region. Specifically, the subgraph
of a foreground region is selected from candidate subgraphs
using an algorithm based on connected component decom-
position.

2. PROPOSED METHOD
The proposed method consists of the following four steps

illustrated in Figure 1 (bottom):

(1) Transform each image into a graph.

(2) Find matches between graphs.

(3) Extract the subgraph representing the foreground.

(4) Refine the foreground region.

We describe the detail of each step in the following.

2.1 Transform each image into a graph
To suppress the number of vertices in a graph, we em-

ploy superpixel representations. For this purpose, we use
the SLIC [6] algorithm introduced by Achanta et al. SLIC
is based on K-means; however, it differs from typical K-
means-based clustering in some aspects. For example, it
moves centroids to the lowest gradient position in the ini-
tialization step and reduces the search region for clustering
each superpixel.
Thus, all input images are transformed into superpixels,

each of which is considered as a vertex of the graph. Each

Figure 3: Coarse-grained phase process. (1) A vertex is cho-
sen from each graph, and (2) the complete weighted bipartite
graph is constructed from the neighbors of each vertex. (3)
The maximum weighted matching score is considered as the
similarity of these two vertices.

Figure 4: Fine-grained phase process. (1) Pairs of vertices
are sorted in descending order of the similarity computed
in the coarse-grained phase, and (2) the most similar pair is
added to the alignment network. (3) The complete weighted
bipartite graph is constructed from the neighbors of the ver-
tices, and (4) the maximum weighted matching is computed.
(5) The pairs of endpoints of the maximum weighted match-
ing are added to the alignment network to increase the num-
ber of edges in E12.

vertex is connected to its neighbors within two steps. The
dot product between the mean vectors of SIFT features ex-
tracted from each superpixel is employed as the similarity
between a pair of vertices.

Figure 2 shows superpixels obtained by SLIC (middle)
and the resultant graph (right) of an image in the iCoseg
[10] dataset.

2.2 Find matches between graphs
We use the SPINAL algorithm [7] to find all matches from

the graphs of a pair of images. SPINAL was originally pro-
posed by Aladağ et al. to find matches between protein-
protein interaction networks. In the field of bioinformatics,
it has been suggested that SPINAL is more scalable than
other algorithms such as IsoRank [8], MI-GRAAL [9], and
NATALIE [17]. SPINAL is a global graph matching algo-
rithm that computes one-to-one mapping for every vertex
between two graphs.

Let G1 = (V1, E2) and G2 = (V2, E2) be two input graphs,
where V and E represent their vertices and edges, respec-
tively. To represent matches between graphs, alignment net-
work A12 = (V12, E12) is defined. Each node of V12 repre-
sents a pair ≺ ui, vj ≻, where ui ∈ V1 and vj ∈ V2. For



any pair of vertices ≺ ui, vj ≻∈ V12 and ≺ u′
i, v

′
j ≻∈ V12

it should be the case that ui ̸= u′
i and vj ̸= v′j . The edge

set of the alignment network is defined as (≺ ui, vj ≻,≺
u′
i, v

′
j ≻) ∈ E12 if (ui, u

′
i) ∈ E1 and (vj , v

′
j) ∈ E2. The goal

of SPINAL is to find the alignment network A12 that max-
imize the global network alignment score (GNAS), which is
defined as follows;

GNAS(A12) = α|E12|+ (1− α)
∑

∀≺ui,vj≻

seq(ui, vj), (1)

where |E12| denotes the number of edges in E12, and seq(ui, vj)
denotes the similarity between two vertices, where ui ∈ V1

and vj ∈ V2. Here α ∈ [0, 1] is a parameter to balance the
network-topological similarity and the sequence similarities.
We set α = 0.5 for all experiments in this study.
Generally, finding the optimal solution for the above prob-

lem is NP-hard [7]. To relax the problem efficiently, SPINAL
consists of two main phases: a coarse-grained phase that
computes rough similarities of all pairs of vertices ui ∈ V1

and vj ∈ V2, and a fine-grained phase that constructs the
alignment network.
Figure 3 shows the process of the coarse-grained phase.

We denote the set of neighbors of ui in G1 as N(ui) and
the set of neighbors of vj in G2 as N(vj). In the coarse-
grained phase, the neighborhood bipartite graph (NBG), a
complete edge-weighted bipartite graph defined on the par-
titions N(ui) and N(vj), is constructed and the similarity
between N(ui) and N(vj) is computed by the maximum
weighted matching of NBG. In this manner, initial match-
ing scores are computed for all pairs ui ∈ V1 and vj ∈ V2.
Figure 4 shows the process of the fine-grained phase. In

this phase, the most similar pair of vertices not contained in
V12 is first added to V12. Then, its NBG is constructed, and
the maximum weighted matching is added to V12. For the
endpoints of an edge not contained in the matching, their
NBGs are repeatedly constructed. This process is repeated
until there is no pair of vertices not contained in V12.

2.3 Extract the subgraph representing the fore-
ground

In this step, we extract the subgraph that represents the
common foreground from the alignment network obtained
by SPINAL. A depth-first search is applied to the alignment
network to decompose the connected components, and each
connected component is evaluated by the objective function
(1) of SPINAL. The connected component with the high-
est score is considered as the subgraph that represents the
foreground.
Although it is not guaranteed that a subgraph extracted

in this approach always corresponds to the foreground in
general cases, our assumption is that the foreground occu-
pies large areas in images, which we consider reasonable for
many practical situations.

2.4 Refine the foreground region
To extract the foreground more precisely, we use Grab-

Cut [12] proposed by Rother et al. Given small portions
of foreground and background annotations as seeds, Grab-
Cut estimates their entire regions. In our pipeline, we use
the region corresponding to the subgraph obtained in the
previous step as the foreground seed. In this manner, the
coarse foreground obtained by graph matching is refined at
the pixel level.

Table 1: Cosegmentation accuracy on iCoseg (%).
iCoseg GrabCut Rubio+[15] Yu+[14] Ours

Alaskan bear 84.3 86.4 78.0 86.7
Red sox players 85.4 90.5 86.4 95.5
Stonehenge 1 78.0 87.3 87.4 87.2
Stonehenge 2 70.7 88.4 74.7 87.7
Liverpool 75.4 82.6 82.9 82.4
Ferrari 79.7 84.3 86.1 91.5

Taj Mahal 82.5 88.7 85.4 79.0
Elephants 84.7 75.0 82.2 95.5
Pandas 68.3 60.0 76.8 85.8
Kite 86.4 89.8 85.2 92.6

Kite Panda 73.0 78.3 80.1 86.7
Gymnastics 85.0 87.1 90.7 96.6
Skating 65.5 76.8 77.3 78.4

Hot Balloons 83.2 89.0 86.3 91.8
Liberty Statue 73.1 91.6 87.3 88.2
Brown Bear 70.7 80.4 81.5 95.6
Average 77.9 83.9 83.0 88.8

Table 2: Cosegmentation accuracy on MSRC (%).
MSRC Images GrabCut Rubio+[15] Ours

Cars (front) 6 75.9 65.9 84.2
Cars (back) 6 72.5 52.4 81.1

Face 30 67.8 76.3 79.6
Cow 30 83.9 80.1 94.3
Cat 24 81.3 77.1 89.7
Plane 30 81.3 77.0 87.4
Bike 30 71.5 62.4 72.1

Average - 76.3 70.2 84.1

3. EXPERIMENTAL RESULTS
To evaluate the proposed method, we compared it with

two state-of-the-art unsupervised graph-matching-based al-
gorithms [15, 14] 1 on the widely used iCoseg [10] (38 object
classes; approximately 17 images per class) and MSRC [11]
(14 classes; approximately 30 images per class) datasets,
equipped with pixel-level segmentation ground truth. To
ensure fair comparison with previous methods, we used a
subset that consists of 16 classes from iCoseg and 7 classes
from MSRC. Segmentation accuracy was evaluated in terms
of the ratio of the number of correctly labeled pixels to the
total number of pixels in an image. For each class, we ran-
domly paired all images to use them as testing queries and
reported the average accuracy. Tables 1 and 2 show experi-
mental results for iCoseg and MSRC, respectively.

Table 1 shows the experimental results for iCoseg. The
second column shows the results obtained using GrabCut
only, and the third and fourth columns show the results ob-
tained using previous methods. The last column shows the
results obtained using the proposal method. Table 2 shows
results for MSRC (the second column shows the number of
images).

These results demonstrate that the proposed method out-
performs previous methods in nearly all classes. As dis-
cussed in the introduction, previous methods find matches
for only one visually common region between images that
often undesirably include background. On the other hand,
the proposed method finds matches for all vertices and re-
moves the connected components that are dissimilar to be

1Some recent work has achieved very good performance by
simultaneously cosegmenting more than two images [13, 2].
Since this is not included in our current scope, we focus on
those using only two images as input.



Figure 5: Cosegmentation results on the iCoseg (top) and MSRC (bottom) datasets. The results of each class consist of four
images. The two left images show the original images and the two right images show the common object.

foreground. Therefore, the proposed method achieves much
significantly higher accuracy than the previous methods.
Compared with the state-of-the-art method [2] with coseg-

mentating of more than two images simultaneously, the re-
sults show higher accuracy than the proposed method (89.6%
iCoseg). However, we expect to improve the accuracy of the
proposed method by extending it to enable cosegmentation
of multiple images.
Figure 5 shows some examples of images from the iCoseg

and MSRC datasets, as well as their foreground regions ex-
tracted by the proposed method. These results illustrate
that the proposed method can obtain proper foregrounds un-
der difficult conditions such as miscellaneous backgrounds,
viewpoint and scale changes, and object deformation.

4. CONCLUSIONS
We have proposed a method of unsupervised object coseg-

mentation based on a global graph matching algorithm. A
local graph matching algorithm has been applied to find a
common region in previous methods; however, the proposed
method exploits global graph matching that can find a one-
to-one mapping for every vertex between input graphs to
remove background regions more accurately. Experimental
results obtained with the iCoseg and MSRC datasets demon-
strate the effectiveness of the proposed metehod. In addi-
tion, experimental results indicate that the accuracy of the
proposed method is higher than that of previous methods.
In future, we will extend the proposed method to enable

cosegmentation of more than two images or image streams.
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[7] A. E. Aladağ et al. SPINAL: scalable protein
interaction network alignment. Bioinformatics, vol. 29,
no. 7, pp. 917-924, 2013.

[8] R. Singh et al. Global alignment of multiple protein
interaction networks with application to functional
orthology detection. Proc. Natl. Acad. Sci. USA, vol.
105, no. 35, pp. 12763-12768, 2008.

[9] O. Kuchaiev et al. Integrative network alignment
reveals large regions of global network similarity in
yeast and human. Bioinformatics, vol. 27, no. 10, pp.
1390-1396, 2011.

[10] D. Batra et al. iCoseg: Interactive co-segmentation
with intelligent scribble guidance. In Proc. of IEEE
CVPR, 2010.

[11] J. Winn et al. Object Categorization by Learned
Universal Visual Dictionary. In Proc. of IEEE ICCV,
2005.

[12] C. Rother et al. ”GrabCut” - Interactive foreground
extraction using iterated graph cuts. In ACM Trans.
Graphics, vol. 23, no. 3, pp. 309-314, 2004.

[13] A. Factor et al. Co-segmentation by composition. In
Proc. of IEEE ICCV, 2013.

[14] H. Yu et al. Unsupervised cosegmentation based on
superpixel matching and Fastgrabcut. In Proc. of IEEE
ICME, 2014.

[15] J. C. Rubio et al. Unsupervised co-segmentation
through region matching. In Proc. of IEEE CVPR,
2012.

[16] D. S. Hochbaum et al. An efficient algorithm for
Co-segmentation. In Proc. of IEEE ICCV, 2009.

[17] G. W. Klau et al. A new graph-based method for
pairwise global network alignment. BMC
Bioinformatics, vol. 10, suppl. 1, S59, 2009.




