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Abstract. In this paper, we present a novel method for multimodal ges-
ture recognition based on neural networks. Our multi-stream recurrent
neural network (MRNN) is a completely data-driven model that can be
trained from end to end without domain-specific hand engineering. The
MRNN extends recurrent neural networks with Long Short-Term Mem-
ory cells (LSTM-RNNs) that facilitate the handling of variable-length
gestures. We propose a recurrent approach for fusing multiple tempo-
ral modalities using multiple streams of LSTM-RNNs. In addition, we
propose alternative fusion architectures and empirically evaluate the per-
formance and robustness of these fusion strategies. Experimental results
demonstrate that the proposed MRNN outperforms other state-of-the-
art methods in the Sheffield Kinect Gesture (SKIG) dataset, and has
significantly high robustness to noisy inputs.

Keywords: multimodal gesture recognition, recurrent neural networks,
long short-term memory, convolutional neural networks

1 Introduction

Deep neural networks are efficient machine learning models used by many appli-
cations in computer vision, speech recognition, and natural language processing.
Although various architectures have been proposed in recent years, convolutional
neural networks (ConvNets) are currently dominant in a variety of benchmarks
in computer vision [1, 2]. In many object recognition competitions, such as the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), nearly all top-
ranked teams used ConvNets. In recent studies, the error rate of the state-of-
the-art models outperforms the human performance [3, 4].

On the other hand, in gesture recognition, such a dominant model has not ap-
peared yet. One main reason is that it is difficult for neural networks to simul-
taneously learn effective image representations and sequential models.

Traditional gesture recognition systems consist of several consecutive stages [5,
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Fig. 1. Two examples in the SKIG dataset [10]. This figure shows that each modal-
ity has different importance for different gestures. The upper two rows show a color
sequence and a corresponding depth sequence of an example from the “Up-down” cat-
egory, whereas the lower two rows show an example from the “Turn around” category.
It can be seen that depth modality is useful for classifying the upper example. How-
ever, in the lower example, the temporal change in the depth modality is very minor,
because the key action of the “Turn around” gesture is a hand rotation. Therefore, the
color modality should also be considered in classification.

6]. The first stage involves detecting and segmenting the regions of the objects
being focused on (e.g., hands, arms). This stage requires prior knowledge of
target gesture domains. In the second stage, features are extracted from the seg-
mented regions. Finally, the last stage classifies input gestures using sequential
data models such as the Hidden Markov Model (HMM). One of the largest draw-
backs of this consecutive approach is that overall performance strongly depends
on the quality and the generalization ability of each stage. Moreover, hand-coded
heuristics (such as skin color filtering) that are often used during the first stage
make the entire system too specific to the target gestures.

Hand-coded heuristics lead to a lack of generality in gesture recognition systems.
Representation learning is one of the most efficient methods for addressing this
problem [7]. Representation learning focuses on the extraction of effective fea-
tures from raw data. In particular, multimodal representation learning has at-
tracted increasing attention in machine learning [8, 9]. One main reason for this
trend is that multimodal information can improve the robustness of classifiers.
In general, an object can be described by various modalities, including color
image, depth data, sound, and natural language. Each modality is expected to
carry different information. Some objects might not be correctly discriminated
from others if only a single modality is available. Information from multiple
modalities can suppress this type of misclassification. This is also the case for
gesture recognition. Some gestures are similar in color modality but are sig-
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nificantly different in depth modality, and vice versa. We show such examples
from the SKIG dataset [10] in Fig. 1. The upper two rows are a color sequence
and a corresponding depth sequence of an example video from the “Up-down”
category. The lower two rows show another example from the “Turn around”
category. It is obvious that the depth information is effective for classifying the
“Up-down” gesture. However, the “Turn around” gesture requires color informa-
tion, because the depth modality changes very slightly throughout the frames.
Thus, incorporating multimodal information is crucial for improving classifica-
tion performance.

This paper makes the following contributions:

◦ We introduce a novel multimodal-temporal fusion approach that uses recur-
rent neural networks with Long Short-Term Memory cells (LSTM-RNNs)
[11, 12]. Our recurrent fusion method makes it possible to embed multiple
modalities while considering temporal dynamics.

◦ We also propose alternative architectures as baselines to fuse multiple tem-
poral modalities and compare them with the MRNN.

◦ We show for the first time that fusing multiple modalities while considering
temporal dynamics is significantly beneficial not only for improving classifi-
cation performance, but also for increasing robustness to noisy inputs.

◦ The MRNN outperforms previous approaches and our alternative models in
the SKIG dataset, and achieves state-of-the-art performance.

2 Related work

Our work continues in the path established by Murakami et al. (1991) [13]. Both
their work and ours propose a data-driven method for gesture recognition that
does not require any prior knowledge of target gesture domains. Gesture recog-
nition systems that use a more conventional approach split the entire system
into three components: a hand detector, feature extractor, and classifier [5, 6].
While there are many works that employ machine learning techniques for ges-
ture recognition, detection and segmentation of key objects (e.g., hands, arms)
remain hand-coded. In contrast, in our MRNN, these processes are automati-
cally optimized towards end-to-end classification performance.

Many neural network models have been applied to various tasks in computer
vision, including object recognition [14], [3], object detection [2], semantic seg-
mentation [15], and image generation [16]. Murakami et al. (1991) [13] used
Elmen RNN [11] for gesture recognition. They used data collected from data
gloves. However, in practice, data gloves are not always available for real-world
applications. Ji et al. (2013) [17] extended conventional ConvNets to 3D Con-
vNets for handling videos. Karpathy et al. (2014) [18] proposed hierarchically
stacked 2D ConvNets for fusing temporal-spatial information. Donahue et al.
(2014) [19] incorporated a ConvNet with an LSTM-RNN and applied it to ac-
tion recognition. Molchanov et al. (2015) [20] proposed a multimodal gesture
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recognition model consisting of two streams of 3D ConvNets. They developed a
high-resolution 3D ConvNet and a low-resolution 3D ConvNet that are merged
in the last layer, and achieved the highest accuracy in the 2015 Vision for Intel-
ligent Vehicles and Applications (VIVA) challenge [9]. Their approach is similar
to our early multimodal fusion model; however, we use LSTM-RNNs to extract
temporal dynamics. Liu et al. (2013) [10] proposed restricted graph-based ge-
netic programming to fuse color and depth modalities. However, their approach
requires primitive 3D operations that must be defined before training. The pro-
cess of choosing these operations limits the model’s classification performance.
In this paper, we use multiple streams of LSTM-RNNs to fuse multiple tempo-
ral modalities. The recurrent nature of our approach allows it to fuse modalities
sequentially while considering temporal dependencies. For comparison, we pro-
pose alternative architectures that fuse modalities before or after LSTM-RNN
streams, and demonstrate that the proposed MRNN is a significantly efficient
model in terms of classification performance and robustness to noisy inputs.

3 Multi-stream Recurrent Neural Network

Overview The purpose of our model is to classify gestures into given cate-
gories by utilizing information from multiple modalities. We develop multiple
streams of LSTM-RNNs using ConvNets. Each stream receives frame-level in-
puts at every step from corresponding modalities, and independently represents
the temporal dynamics of each modality. To embed the disconnected represen-
tation into a common space, we construct an additional LSTM-RNN stream on
top of these streams. Fig. 2 displays the graphical representation of the MRNN.
For comparison, we also propose two alternative architectures: the late multi-
modal fusion model and the early multimodal fusion model. These models are
displayed in Fig. 3 (a), (b). In this section, we first explain LSTM-RNNs. We
then describe the details of our proposed models.

3.1 RNN with LSTM cells

A recurrent neural network (RNN) is a straightforward extension of multilayer
perceptrons to sequential modeling [11]. Let ϕ(xt) ∈ Rn and ht ∈ Rm be a
nonlinearly transformed input and a hidden state, respectively, at step t. The
nonlinear function ϕ is a neural network that extracts the feature vector from
the input xt. For example, ConvNets can be used as ϕ if xt is spatial data such as
a color image. The neural network ϕ is a portion of the entire architecture, and
is optimized simultaneously with the remaining network. Given input sequence
(ϕ(x1), . . . ,ϕ(xT )), an RNN computes the hidden sequence (h1, . . . ,hT ) using
the following equations:

ht = f(Winϕ(xt) +Whhht−1). (1)
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Fig. 2. A graphical representation of the MRNN. The circles represent fully connected
layers, the rectangles represent LSTM-RNNs, and the solid lines represent weighted
connections. The MRNN has multiple streams of LSTM-RNNs h
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(a) Late multimodal fusion model

(b) Early multimodal fusion model

Fig. 3. Alternative multimodal fusion models. (a) Late multimodal fusion model fuses

modalities (h
(A)
T , h

(B)
T , h

(C)
T ) to h(∗) at only the last step. (b) Early multimodal fusion

model fuses modalities (ϕ(A)(x
(A)
t ), ϕ(B)(x

(B)
t ), ϕ(C)(x

(C)
t )) to h

(∗)
t at every step before

computing the state ht of the LSTM-RNN. The important difference between these
models (a), (b) and the MRNN model (Fig. 2) is that the multimodal fusion processes
do not depend on temporal dynamics.
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Fig. 4. Graphical representation of an LSTM-RNN. ϕ(xt) and ht−1 respectively denote
a transformed input and the previous state. ϕ is a neural network that extracts the
feature vector from the input xt. ct, gt, it, ft, and ot represent a memory cell, an input
modulation gate, an input gate, a forget gate, and an output gate, respectively. ⊙ is
element-wise multiplication of vectors.

Here, we omit the bias term for simplicity. We define h0 = 0. The activation
function f (e.g., sigmoidal function and tanh function) is applied to the input
vector in an element-wise manner. In this equation, free parameters are the
input-to-hidden weight matrix Win ∈ Rm×n, the hidden-to-hidden weight ma-
trix Whh ∈ Rm×m, and the parameters of ϕ. This equation represents that the
hidden state ht is dependent not only on the current input xt but also on the
previous state ht−1. Therefore, ht can represent the sequential dynamics of in-
put sequence (x1, . . . ,xt).

The recurrent structure (Eq. (1)) enables the handling of variable-length se-
quential data. However, it is known that RNNs tend to suffer from vanishing
or exploding gradient problems during training [21]. Because of these problems,
RNNs cannot remember long-term dependencies in practice. LSTM-RNNs are
an elegant method to solve these problems [12]. LSTM-RNNs have been suc-
cessfully applied to many applications in natural language processing [22, 23]
and speech recognition [24], outperforming conventional sequential models such
as HMMs and an Elman RNN. Fig. 4 shows the graphical representation of an
LSTM-RNN. An LSTM-RNN is composed of several vectors of same dimension
m, a hidden state ht ∈ Rm, a memory cell ct ∈ Rm and four gates: gt, it, ft,
and ot ∈ Rm. gt, it, ft and ot denote an input modulation gate, an input gate, a
forget gate, and an output gate at step t. At every step, an LSTM-RNN updates
its state ht using the following equations:
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gt = tanh(Winϕ(xt) +Whhht−1), (2)

it = sigmoid(Wixϕ(xt) +Wihht−1), (3)

ft = sigmoid(Wfxϕ(xt) +Wfhht−1), (4)

ot = sigmoid(Woxϕ(xt) +Wohht−1), (5)

ct = it ⊙ gt + ft ⊙ ct−1, (6)

ht = ot ⊙ tanh(ct). (7)

In these equations, ⊙ is an element-wise multiplication of vectors.

Please note that we initialize all the parameters, including those of ϕ; moreover,
we optimize the parameters of ϕ simultaneously with the other parameters, using
mini-batch stochastic gradient descent (SGD) and backpropagation through time
(BPTT) [25, 26].

3.2 Recurrent multimodal fusion

The MRNN is shown in Fig. 2. We develop multiple streams of LSTM-RNNs
using ConvNets, the number of which is equal to the number of input modalities.
These streams independently update their states according to Eqs. (2)-(7), us-
ing input sequences from corresponding modalities. To embed this disconnected
information into one common space, we also construct another LSTM-RNN as a
fusion stream on top of these streams. At every step, the fusion stream receives
the states of the lower streams and fuses them into multimodal-temporal space.
Thus, the multimodal fusion process is performed sequentially. Importantly, the
fusion structure makes it possible to fuse modalities while considering temporal
dependencies. This is the reason we call this fusion strategy “recurrent mul-
timodal fusion”. We add a fully connected layer (classification layer) onto the
fusion stream. The classification layer receives the last state of the fusion LSTM-
RNN. We use the softmax function to compute the probability distribution over
categories.

3.3 Late multimodal fusion

As an alternative strategy to incorporate multimodal-temporal data, we propose
the late multimodal fusion model shown in Fig. 3 (a). As with the MRNN, the
late multimodal fusion model also employs multiple streams of LSTM-RNNs us-
ing ConvNets for each input modality. The difference from the MRNN is that the
fusion layer is not an LSTM-RNN but a normal fully connected layer. Thus, the
multimodal fusion process is performed independently of temporal dependencies.
The fusion layer receives the last states of each stream and embeds them into a
common space. The last states of each stream hold information about the tem-
poral dynamics of each input modality. Because the fusion process is performed
after the LSTM-RNN streams, we call this method “late multimodal fusion”. In
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this sense, this structure is similar to the model of Molchanov et al. (2015) [20],
whereas our late multimodal fusion model uses LSTM-RNNs to extract temporal
information. As with the MRNN, we add a fully connected layer (classification
layer) onto the fusion layer and use the softmax function. The classification layer
receives an embedded multimodal feature and predicts the category distribution.

3.4 Early multimodal fusion

The early multimodal fusion model we propose is shown in Fig. 3 (b). This
approach integrates multiple modalities using a fully connected layer (fusion
layer) at every step before inputting signals into the LSTM-RNN stream. This
is the reason we call this strategy “early multimodal fusion”. As with the late
multimodal fusion model, this model’s multimodal fusion process is performed
independently of temporal dependencies. This model has only one LSTM-RNN
stream, because the input to the LSTM-RNN is already embedded into a com-
mon space by the fusion layer. At every step, the LSTM-RNN receives the em-
bedded feature from the fusion layer and updates its state. As with the other
two models, the classification layer predicts the probability distribution over
categories using the last state of the LSTM-RNN.

4 Experiments

Fig. 5. Examples from the SKIG dataset. This figure is cited from [10].

4.1 Dataset

Using the Sheffiled Kinect Gesture (SKIG) dataset, we compared the MRNN
with previous works and our alternative fusion models. The SKIG dataset con-
tains 1080 gesture videos, each belonging to 10 gesture categories. Fig. 5 dis-
plays some examples from the dataset. Each video consists of two modalities
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(a color image sequence and a depth data sequence) captured by the Microsoft
Kinect sensor. For preprocessing, we downsized all of the frames to 224 × 224,
and divided them by 255. All videos are collected from six subjects. We dev-
ided all videos into three subsets: subject1+subject2, subject3+subject4, and
subject5+subject6. We evaluated our models using 3-fold cross validation, in
accordance with the previous works.

It is known that optical flow works effectively for action recognition [27]. We
believe that adding temporal information (such as optical flow) to the input of
the MRNN improves its classification performance. Given an RGB sequence, we
computed dense optical flow based on Gunner Farneback’s algorithm [28] using
OpenCV. To reduce noise, we apply a bilateral filter to every frame before com-
puting optical flow. As a result, we can obtain a two-channel flow data sequence
corresponding to the source RGB sequence.

4.2 Network architecture

Throughout our experiments, we fixed the dimension size m of the LSTM-RNNs
to 512. We also set the dimension size of the fusion layers to 512. The dimension
size of the classification layers is 10, which is equal to the number of gesture
categories. We used three modalities in our experiments: color image, optical
flow, and depth data. Because these modalities are spatial data, we developed
the ConvNet architecture based on Network In Network (NIN) [29] as a nonlinear
transformer ϕ for each input modality. We show the architecture of the ConvNet
that we used in our experiments in Fig. 6. We initialized all parameters (including
those of the ConvNets) from a Gaussian distribution, except for hidden-to-hidden
weight matrices of the LSTM-RNNs, for which we used an identical matrix
according to Le et al. (2015) [30].

4.3 Training settings

We used the cross entropy error as our loss function. We added an L2 regular-
izatoin term multiplied by 0.0001 to the loss. We used mini-batch SGD with
a learning rate of 0.01. After three epochs, we set the learning rate to 0.001.
We set the mini-batch size to 5. We computed all gradients of the parameters
using BPTT [25, 26]. We implemented the experimental code with Chainer [31],
a Python-based open source library for deep learning, on an NVIDIA TITAN X
GPU.

4.4 Experimental results

We evaluated the test accuracies of the MRNNs (trained on multiple modalities
or a single modality) and our alternative fusion models. We report the results
in Table 1. The MRNN trained on multiple modalities significantly outperforms
the previous works, and provides improved test accuracy. To the best of our
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Fig. 6. The architecture of the ConvNet that we used in our experiments. This model
has 11 convolution layers (conv), 2 batch normalization layers (BN) [4], and 4 max
pooling layers (pool). Each convolution layer is followed by a rectified linear (ReLU)
nonlinearity. C is the number of channels of the input frames. We vectorize the last
feature maps of size 1024× 3× 3 to 9216-dimensional vector.

Fig. 7. Test accuracies of the MRNN trained on multiple modalities (red line), the
MRNN trained on only depth modality (magenta line), the late multimodal fusion
model (green line), and the early multimodal fusion model (blue line). We added Gaus-
sian noise with different standard deviations (denoted by σ) to the depth data of the
test inputs. The MRNN trained on multiple modalities successfully utilizes the other
modalities to suppress the influence of noise on the depth inputs.
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Table 1. Comparison of test accuracy using the SKIG dataset

Method Accuracy (%)

Liu et al. (2013) [10] 88.7

Choi et al. (2014) [32] 91.9

Tung et al. (2014) [33] 96.7

Early multimodal fusion 94.1

Late multimodal fusion 94.6

MRNN (color only) 91.6

MRNN (optical flow only) 88.5

MRNN (depth only) 95.9

MRNN 97.8

knowledge, this accuracy represents the state-of-the-art performance for this
dataset. The MRNN trained on multiple modalities also outperforms the other
multimodal fusion models. This indicates that a multimodal fusion process that
considers temporal dependencies is beneficial for efficient embedding. Compared
with the MRNNs trained on a single modality (color only, optical flow only,
or depth only), the MRNN trained on multiple modalities also produces better
accuracy. Therefore, the MRNN succeeds in utilizing multimodal information
effectively.

In our experiments, we also investigated the robustness of the MRNN to noisy
inputs. In Fig. 7, we plot the test accuracies when we add Gaussian noise with
different standard deviations (denoted by σ) to the depth inputs in the test
set. As shown in Fig. 7, the MRNN trained on multiple modalities tends to
maintain high accuracy, even when the accuracies of the other models decline.
The difference in Fig. 7 indicates that the multimodal fusion structure of ths
MRNN provides significant benefits in incorporating modalities to complement
each modality.

It is notable that the MRNN does not require any domain-specific localization or
segmentation techniques throughout our experiments. The MRNN learns feature
extraction, multimodal fusion, and sequential modeling simultaneously in a sin-
gle architecture in a supervised manner. Therefore, the MRNN is a completely
data-driven approach to multimodal gesture recognition, and provides excellent
classification performance and high robustness to noisy inputs.

5 Conclusion

In this paper, we proposed a multimodal gesture recognition model that incor-
porates multiple temporal modalities using multiple streams of LSTM-RNNs.
All parameters of the MRNN are optimized towards end-to-end performance in
a supervised manner. The MRNN does not require heuristic engineering that
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is strongly dependent on target gesture domains. We evaluate our recurrent
multimodal fusion approach with alternative fusion models. Experimental re-
sults indicate that the MRNN (and its multimodal fusion process that considers
temporal dependencies) provide significant benefits, and provide excellent clas-
sification performance as well as high robustness to noisy inputs. Moreover, the
MRNN achieves state-of-the-art performance in the SKIG dataset.

In future, we plan to utilize other modalities such as speech and skeletal data.
Moreover, we plan to apply the MRNN to sign language recognition.
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