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Abstract

Generic image recognition is a technique that enables computers to recog-
nize unconstrained real-world images and describe their content in a nat-
ural language. It is known to be an extremely difficult problem due to the
wide variety of targets and the ambiguity of the task. The key to realizing
versatile and high performance generic image recognition is statistical ma-
chine learning using a large number of examples. However, since previous
methods lack scalability with respect to the number of training samples,
hitherto it has been practically impossible to utilize a large-scale image
corpus for training and recognition.

In this thesis, we develop a scalable and accurate generic image recogni-
tion (image annotation) algorithm. To perform accurate image annotation,
the semantic gap, that is, the gap between low-level image features and
high-level meanings, need to be relaxed. The following two processes are
essential in tackling this problem.

1. Extracting diverse and expressive image features.

2. Learning distance metrics between samples.

To realize a scalable system, it is extremely important to consider the com-
patibility of these processes. For large-scale problems, it is desirable that
the complexity of training is linear in the number of training samples.
Therefore, to learn a discriminative distance metric, we focus on canonical
correlation analysis (CCA), a technique for bimodal dimensionality com-
pression. By exploiting the probabilistic structure of CCA, we derive a
theoretically optimal distance metric, called the canonical contextual dis-
tance (CCD). Image annotation based on CCD is shown to achieve com-
parable performance to state-of-the-art works with lower computational
costs for learning and recognition.

Moreover, to use CCD efficiently, image features should be embedded in
a Euclidean space. Specifically, the inner products in the feature space
should appropriately reflect the similarity of features in terms of a genera-
tive process. Therefore, we develop a new framework to extract powerful



image features that satisfy this requirement. We propose the global Gaus-
sian approach, in which we model the distribution of local features in an
image with a single Gaussian. Further, using the technique of information
geometry, we approximately code a Gaussian into a feature vector, which
we call the generalized local correlation (GLC).

Using a combination of CCD and GLC, we can realize a scalable high-
performance image annotation system. We show the effectiveness of our
system using a large-scale dataset consisting of twelve million web im-
ages.
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Chapter 1

Introduction

1.1 Background

Generic image recognition1 (Figure 1.1) is a technique that allows computers to recog-
nize unconstrained real-world images and to describe the content thereof in a natural
language [154; 229]. As humans also recognize objects and scenes from visual in-
formation to decide actions, generic image recognition is one of the most essential
abilities for real-world intelligent systems. Since generic image recognition is a valu-
able technique in both science and engineering, it has drawn the attention of many
researchers in a variety of fields.

A scientific interest is to realize and understand the image recognition ability of
humans. This ability has been studied enthusiastically for decades in many areas in-
cluding cognitive psychology and brain science. An approach from Computer Science
can also provide significant insight.

Moreover, because generic image recognition tackles the symbol grounding prob-
lem, which is a fundamental problem in artificial intelligence, its commercial impact
would be immense. For example, real-world recognition systems for robots and au-
tomobiles would become straightforward applications. Moreover, it could be used for
lifelogs, surveillance systems, and web image search engines.

However, despite its long history, generic image recognition has not yet been re-
alized, and is still regarded as one of the ultimate goals in computer vision. The dif-
ficulty of generic image recognition stems from the diversity of the images and target
objects. Even at an instance level, the appearances of images change widely accord-
ing to viewpoints, illumination, and occlusion conditions (Figure 1.2). Furthermore,
generic objects include a variety of instances, resulting in more diversity of appear-
ance. For example, although the samples in Figure 1.3 are all “chairs”, their colors

1Also called generic object recognition. “Generic objects” include not only rigid objects, but also
abstract symbols such as scenes or adjectives.
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1.2. Objective
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Figure 1.1: Illustration of generic image recognition. Several meanings (symbols) can
be extracted from a single image.

and shapes differ considerably. Moreover, the goal of generic image recognition is to
recognize various generic objects in the world as humans do. A psychological study
showed that humans can recognize tens of thousands of categories using only visual
information [16]. To do this on a computer, we need to deal with even more diversity
in image appearance.

As discussed in detail in Chapter 2, it has been shown that it is difficult to design
a prototype explicitly for generic image recognition due to the diversity and ambiguity
of the process. Consequently, the statistical machine learning approach is now flour-
ishing in this area. In particular, learning with a huge number of examples is thought
to be the most promising methodology to realize generic image recognition. However,
since previous methods generally lack scalability, it has been practically impossible to
train a system with a large-scale image corpus. This is a severe bottleneck in generic
image recognition techniques. For example, Table 1.1 gives the complexity of a non-
linear SVM, the standard learning method for generic image recognition. It is clear
that computational costs for training increase dramatically with the number of train-
ing samples. Furthermore, since large scale data rarely fits in the available memory
and standard methods based on gradient descent require storage access during opti-
mization, this leads to extremely slow training. Therefore, large-scale generic image
recognition is not just a matter of the size of the dataset, but rather a new research field
that requires a qualitative breakthrough.

1.2 Objective
In this thesis, we develop a scalable and accurate generic image recognition (image
annotation) algorithm. Specifically, we first develop a statistical machine learning
method to learn discriminative distance metrics between samples, which we call the
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Figure 1.2: Appearance changes due to various real-world conditions.

Figure 1.3: A variety of “chairs”. Credit: Li Fei-Fei et al. CVPR’07 object recognition
tutorial slides.

Table 1.1: Computational complexity of a non-linear SVM. N is the number of training
samples.

Complexity Memory
Training O(N2) ∼ O(N3) O(N2)
Recognition O(N) O(N)
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1.3. Structure of the Thesis

canonical contextual distance (CCD). Further, to extract image features, we develop a
new generic framework that is compatible with the above mentioned method.

1.3 Structure of the Thesis
The structure of this thesis is as follows (Figure 1.4). The background and objective
of the thesis is given in this chapter. In Chapter 2, we survey the history and current
status of generic image recognition, and present the design of our system. We start
to tackle the image annotation problem. In Chapter 3, we review related research on
image annotation. In Chapter 4, we develop our image annotation method based on
scalable distance metric learning. In Chapter 5, we evaluate our image annotation
method using standard datasets. In Chapter 6, we develop a framework to extract
image features that is compatible with our image annotation method. The combination
of these two technologies leads to a scalable and accurate image recognition system,
our final goal. In Chapter 7, we evaluate the proposed system using a large-scale web
image dataset and show its effectiveness. Finally, in Chapter 8, we conclude the thesis
and present our future works.
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Chapter 2

Outline of the Image Recognition
Method

2.1 History and Current Status of Image Recognition

While humans are said to be able to recognize tens of thousands of visual categories [16],
it is extremely difficult for computers to recognize even one object category. Comput-
erized image recognition has attracted the attention of many researchers, and having
originated in the 1950s, has a history of more than half a century.

In the 1950s, research began with recognizing two-dimensional patterns such as
characters and fingerprints. During this era, a statistical pattern recognition approach
was mainly used. Several methods designed geometrically invariant features such as
moment features [83]. The statistical approach once again flourished in the 1990s,
despite its place having been taken for decades by a model based approach.

In the mid 1950s, an “artificial intelligence” paradigm was established by Mar-
vin Minsky and John McCarthy, making the statistical approach obsolete. This new
paradigm began by thoroughly simplifying world descriptions to adequately model
the cognitive ability of humans using mathematical tools. The “blocks world” [158]
was the earliest example in computer vision. In this world, objects were limited to
polyhedrons, and a uniform background was assumed. The objective was to recover
three-dimensional object alignment from a two-dimensional image taken from an ar-
bitrary viewpoint. Later, this idea evolved to line drawing interpretation [73] to handle
curved surfaces. However, in the first place, it was extremely difficult to extract line
drawings reliably from real-world images. Consequently, a generalized cylinder [17]
was used to decompose real-world objects [26; 216]. Nevertheless, it was difficult to
extract components by bottom-up segmentation. This is a fundamental problem of real
image recognition, and is still unsolved today despite much research effort.

Many methods based on generalized cylinders are classified as model-based image
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2.1. History and Current Status of Image Recognition

recognition approaches [155]. In a model-based approach, three-dimensional geomet-
ric models of target objects are pre-defined. Recognition is carried out by matching a
query image with the models. However, because shape models are used directly for
recognition, this approach can recognize only a specific object. To recognize a generic
object category, we need to prepare a sufficient number of models covering the diver-
sity of the category, which is unrealistic in real problems. Moreover, it cannot deal
with generic object categories that have no explicit shapes, such as “sea” and “street”.
A further example of a knowledge based approach, is the image expert system [39].
However, none of these methods was successful because of the problems mentioned
above.

As interest in model-based recognition gradually faded, statistical approaches were
once again studied in the early 1990s. As background, the significant progress in com-
puter hardware made it possible for anyone to exploit statistical analysis methods.
Moreover, many powerful machine learning methods such as the SVM were proposed
during this era. The core idea is an “appearance-based” approach, in which recognition
is conducted directly using 2D images without restoring 3D alignment. This approach
has been the mainstream technique in generic image recognition till today. Whereas
models are designed by humans in a model-based approach, in a statistical approach,
distinctive features are automatically selected through the learning from training ex-
amples. The eigen face method [180] is a representative example of this approach.
This method compresses raw image vectors using eigen subspaces and then uses the
compressed vectors as the features. The parametric eigen subspace method [136] is
an extension of the eigen face method to generic objects. In addition, during this era,
several researchers developed low-level image features that represent statistical prop-
erties of images, such as color and texture. Color histograms [161; 175] are typical
early works. Since color histograms are simple features that can be extracted quickly,
they have been widely used for many tasks including content-based image retrieval
(CBIR) [171].

A problem with the methods from the 1990s was that they were sensitive to oc-
clusion and changes in scale and orientation, because they mainly used global image
features. In the 2000s, this problem was relaxed to some extent, owing to the huge
success of a local feature based approach. Local features describe properties of a small
local area surrounding a certain point (keypoint). In general, local feature descriptors
are designed so that they are invariant or robust to rotation, illumination, and scale
changes. Scale-invariant feature transform (SIFT) [120; 121] is a representative exam-
ple of local feature descriptors. Though keypoint detection methods, especially corner
detection methods, had been studied for a long time [11; 75], SIFT was the first method
that proposed a sophisticated pipeline of keypoint detection, normalization, feature de-
scription, and sub-pixel localization. SIFT enabled robust keypoint matching in real
images. Moreover, local feature based image matching is relatively tolerant to occlu-
sions. As a result of these advantages, SIFT has been used in various areas of computer
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vision and has undergone continuous improvement as a result of the many successive
works [94; 174]. Moreover, besides SIFT, many other local feature descriptors have
been proposed [10; 28; 185].

Originally, local features were designed for specific image recognition1, which is
a technique to recognize a single instance. Nevertheless, it has been proved that lo-
cal features are also effective for generic image recognition. First, a part-based ap-
proach was proposed. This approach models an object using local characteristics and
their spatial alignment. The constellation model [54; 61], which is a representative
method, exploits several local features. This method learns rough spatial alignment of
representative local features for each object category, and attempts to perform robust
recognition against deformation. However, in generic image recognition, it is difficult
to express an image stably using only several local features. This is because key-
points are selected according to their saliency and do not necessarily capture essential
information for recognition. Furthermore, the computational cost of training the con-
stellation model is immense because it optimizes spatial alignment of local features in
a brute-force manner.

On the contrary, many people find it effective to represent images using the sta-
tistical properties of many local features without spatial information. The most well-
known method is the bag-of-visual-words (BoVW) [40], which is based on vector
quantization. This is an application to computer vision, of the bag-of-words (BoW)
[126] method, a technique developed for the field of natural language processing. First,
thousands of local features are extracted from each image. By clustering all local fea-
tures in a training dataset, we obtain some centroids (visual words). Finally, each
image is represented by a visual word histogram. BoVW based image recognition
shows surprisingly high performance in many tasks, and has been studied intensively.
Although one of the reasons for its success is the fact that spatial information of each
local feature is discarded, rough spatial alignment of an image is thought still to be
effective for recognition2. Therefore, spatial pyramid matching (SPM) [106] exploited
spatial information by hierarchically dividing images and matching BoVW histograms
in each region. Despite its simplicity, SPM substantially improved the performance of
the original BoVW. Currently, SIFT BoVW + SPM + SVM is the de-facto standard
algorithm for generic image recognition.

Thereafter, studies on generic image recognition focused on two main problems.
The first of these is how to efficiently exploit a distribution of local features in an
image. This fundamental problem encompasses BoVW. We address this problem in
Chapter 6. The second problem is how to combine multiple features obtained by dif-
ferent descriptors. Multiple kernel learning [103] is a typical approach to this problem,

1Also called specific object recognition. We discuss the difference between generic image recogni-
tion and specific image recognition in the next section.

2For example, “sky” tends to appear at the top, while “sea” tends to appear at the bottom, etc.
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2.2. Generic Image Recognition

(1) Instance level  variance due to physical conditions

 

(2) Category level  variety of instances belonging to one “meaning”

(3) World level  variety of categories in the real world

Specific image recognition

Generic image recognition

Figure 2.1: Three levels of variance in generic images.

and has been studied at length. Although these methods have continuously been stud-
ied and improved, they were basically well established in the 2000s. Now, in the
2010s, research has reached the next phase, in which other resources and methods
are integrated with these basic tools. For example, context information represented
by multiple objects [81; 179], hierarchical structure of categories [45; 70], discover-
ing unseen categories [108], exploiting external knowledge [46; 99; 177] such as the
WordNet [58], and interactive learning [170] are seen to be important topics.

2.2 Generic Image Recognition

2.2.1 Generic Image Recognition vs. Specific Image Recognition

To illustrate an essential difficulty of generic image recognition, we first describe spe-
cific image recognition, a contrasting paradigm. Specific image recognition implies
instance-level recognition. Take “car” image recognition as an example. In generic im-
age recognition the system recognizes various car images including trucks and buses
as “cars”, whereas specific image recognition judges only “whether this object is a
Toyota Corolla or not.”

Their fundamental difference is explained with reference to the variance in im-
age appearance. As described in the introduction, this can be roughly divided into
three levels (Figure 2.1). Specific image recognition focuses on problem (1) (Fig-
ure 1.2). Although many factors need to be considered, such as viewpoint and illu-
mination changes or occlusions, all these factors are basically due to certain physical
constraints. For these kinds of appearance changes, we can design robust local fea-
tures, such as SIFT, in a top-down manner. Thus, specific image recognition has been
making steady progress using local feature based approaches. During the past few
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Figure 2.2: (a) A query image. (b) The closest image in terms of the color histogram.
Credit: Jing et al. [90].

years, near-commercial applications such as Google Goggles1 have appeared.
In addition to this, generic image recognition needs to consider problems (2) and

(3). Of these, problem (2) is fundamentally the more difficult one. Take Figure 1.3
as an example. Although humans recognize that these images are all “chair” images,
their appearances differ substantially. Because the meaning of images depends on our
experience, it cannot always be explained by physical properties such as color and
shape. The gap between low-level image features and high-level meanings is called
the semantic gap [171], which characterizes the generic image recognition problem.

2.2.2 Semantic Gap

Take the two images in Figure 2.2 as an example. While their meanings are entirely
different, they are similar in terms of some low-level features such as color histograms.
This means that distinguishing the meanings from their appearances is computation-
ally difficult. This is a typical illustration of the semantic gap problem. To relax the
semantic gap, the following two processes are important.

Extracting expressive image features

First, the system needs to have high performance in distinguishing samples at an
instance-level. For example, to distinguish the two images in Figure 2.2, shape fea-
tures such as edge histograms would be necessary in addition to color features. Need-
less to say, there are numerous objects and scenes in the real world. Therefore, for

1http://www.google.com/mobile/goggles/
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2.2. Generic Image Recognition

versatile image recognition systems, we should exploit as many features as possible
that illustrate different properties of an image. Consequently, a representation of an
image becomes rather high-dimensional.

Discriminative distance metric learning

Generic image recognition estimates the distance to a concept (class), rather than a
specific instance. Therefore, we need to consider intra-class variance. Since the vari-
ance is not always related to physical conditions, we cannot design invariant features
in a top-down manner. Take the “chair” images in Figure 1.3 as an example. It is
expected that the flat shape of the seat would be critical in discriminating chairs. How-
ever, other features such as color are entirely different for each example. Therefore, we
cannot estimate the semantic distance to the “chair” category merely by matching the
visual features of examples, because semantically irrelevant features could disturb the
inference. This is the essential problem that characterizes generic image recognition.

One naive approach is to exploit a sufficiently large number of training examples
that can fill the image feature space. For example, using as many kinds of “chair”
examples as possible, the possibility of finding a visually similar example increases
for an arbitrary input image. This means that visual distance approaches semantic
distance as the number of training examples grows. We can conduct recognition using
simple non-parametric methods, such as k-nearest neighbor classification. Although a
knowledge based approach once failed in the era of expert systems, we can now easily
utilize an incomparably large amount of high-quality data because of the advances in
web technologies. The promising effect of web-scale data has been shown in recent
works [177; 197].

However, as previously mentioned, since image features are very high-dimensional,
it is still unrealistic to fill the feature space generatively. Moreover, the system would
suffer from the “curse of dimensionality problem”, which states that finding neighbors
in a high-dimensional space is rather difficult. Therefore, it is important to pre-select
important features in a machine learning approach. Take the “chair” example once
again. We first prepare some positive and negative examples of chairs. Applying a dis-
criminative classifier (e.g. SVM) to these, a hyperplane for separating positive and neg-
ative examples is automatically aligned using important features for discrimination. As
for the “chair” category in Figure 1.3, distance to the hyperplane would depend mainly
on shape features, rather than color features. In other words, a one-dimensional new
space is obtained, where distance is strongly related to semantic meanings compared
to the original feature space. Thus, using a machine learning technique, we can obtain
a new distance metric reflecting the semantic meanings of images.
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2.2.3 Tasks of Generic Image Recognition
Generic image recognition is roughly divided into two tasks: (1) labeling a whole
image, and (2) labeling each region in an image (Figure 2.3). In task (2), generally
rigid objects, whose correspondence to image regions is apparent, are likely to be
targeted. On the other hand, task (1) includes symbols that are not explicitly related to
image regions such as abstract scenes, in addition to concrete objects. Also, whereas
a training dataset for task (1) requires only images and corresponding labels, one for
task (2) also requires manual segmentation of image regions for each label. Therefore,
the cost of preparing datasets for task (2) is generally high.

Labeling a whole image

In this framework, the recognition system estimates only whole-image level correspon-
dence with labels, rather than region level. Within, image categorization, is the task
of assigning a single category label exclusively to one image. This is the most basic
theme of generic image recognition that has been studied from the beginning. Since
the evaluation methodology is clear, it has served as a testbed for developing basic
tools such as image features and learning methods.

In contrast, image annotation is the task of assigning multiple labels to a single
image. Annotation is a more generic problem that includes the categorization prob-
lem. Whereas during categorization, we can simply treat training samples without the
targeted label as negative examples, we need to consider relationships between labels
during annotation. As a result, annotation is a more difficult problem than categoriza-
tion. Many approaches, as described in Chapter 3, have been proposed to tackle this
problem.

Since both categorization and annotation techniques are currently well established
for toy datasets, the interest of the community has moved to handling large-scale
data [46; 177; 197] to realize practical systems. Moreover, since training data for
these tasks are relatively easy to prepare owing to advances in web technologies, the
number of studies on large-scale problems is rapidly increasing.

Labeling each region of an image

Object detection is the task of recognizing each object in an image and its region.
Regions are roughly represented by a bounding box or convex polygon. Frontal face
recognition, which is now implemented in many industrial applications, is a typical
example. Basically, this can be done using a sliding window approach, in which the
system scans an image with windows of different sizes and performs binary catego-
rization within each window. In this sense, detection shares many techniques with
categorization. In addition, there are many problems specific to the detection task,
including non-maxima suppression and occlusion handling [47]. Moreover, since a
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Figure 2.3: Various tasks of generic image recognition.

brute-force search of all windows is practically intractable, efficient search methods,
such as the subwindow search [102] and Hough voting [109; 124], have been proposed.

Image segmentation is the task of pixel-level region estimation for each object.
Here the term “segmentation” includes not only bottom-up region partitioning, but
also semantic understanding. Recently, conditional random fields [101] have become
the standard approach for this task [100; 168].

2.3 Training Image Corpus

2.3.1 Small Datasets
The difficulty of generic image recognition changes substantially depending on the
selection of object categories and the nature of the images. Although researchers pre-
pared their own datasets until the early 2000s, some standard benchmark datasets ap-
peared as the research area became more popular. Ref. [153] summarizes the bench-
mark datasets published prior to 2006.

In the field of image annotation, the Corel5K dataset [50] has been the de-facto
standard benchmark for a long time (Figure 2.4, top). This is a subset of the Corel
Stock Photo Library published by Corel Inc., consisting of 80,000 images. Each im-
age is manually labeled with several words so that it can be retrieved using keywords.
Corel5K contains 5,000 pairs of image and labels from the library. Its dictionary com-

14



prises 371 words, which is relatively large considering the size of the dataset. Although
Corel5K has been used in this area for a long time, it has been pointed out that this is
an easy dataset because test images are very similar to the training ones. Therefore, in
addition to Corel5K, recent works have used the IAPR-TC12 (Figure 2.4, middle) and
ESP game (Figure 2.4, bottom) datasets, which were proposed by Makadia et al. [125]
at ECCV 2008. IAPR-TC12 was originally used in ImageCLEF [1], a workshop for
cross-lingual image retrieval, while the ESP game dataset is a subset of an image-label
database obtained from an online image labeling game called the ESP collaborative
image labeling task [189]. These datasets are described later.

For categorization tasks, the Caltech-101 dataset [55; 56] has been the de-facto
standard benchmark. This dataset consists of 9144 images collected from the Internet
using image search engines. It has 101 object classes and a background class, each
of which has between 31 and 800 images. Some examples are shown in Figure 2.5.
Caltech-101 has a wide variety of classes, though position, scale, and direction of
objects are roughly aligned. In 2007, the more difficult Caltech-256 dataset [69] was
released, with 256 classes (Figure 2.6). Compared to Caltech-101, it is characterized
by an increased number of classes and high intra-class variations. Current state-of-the-
art methods achieve an 80% classification rate on Caltech-101, and 50% on Caltech-
256 [65; 210] respectively.

The PASCAL Visual Object Classes (PASCAL VOC) [51; 52] are also widely
used benchmarks. They were introduced in a workshop for generic image recognition
called the VOC Challenge. While there are only 20 classes, many tasks are evaluated
including categorization, detection, and segmentation. Recently, they have often been
used as benchmarks for detection methods.

2.3.2 Large Datasets

Crowd sourcing

The above mentioned small datasets are mainly used for benchmarking algorithms,
where the utility of the resulting recognition system is not considered. To realize use-
ful generic image recognition, it is vitally important to build a large-scale training
corpus covering a wide variety of object appearances in the real world. This requires
enormous human effort. One promising approach is crowd sourcing, where an “anony-
mous crowd” participates in building datasets.

The LabelMe project [159] is an early example of this approach. Anonymous users
label object regions in images using the annotation tool provided over the Internet.
Moreover, users can upload new images freely. In exchange for a little labeling work,
researchers get an entire dataset. In 2009, the LabelMe framework was extended to
support movies [215]. However, a problem with this approach is that the system is
totally dependent on volunteers. Since image labeling is a tiring work, it is unrealistic
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2.3. Training Image Corpus

to expect significant effort from public contributors other than the researchers.
In contrast, some works attempt to motivate users by turning the labeling process

itself into a game. The ESP game [189] provides the following image annotation game.
First, two anonymous players are randomly connected over the Internet. The system
displays the same image to both players. The players freely annotate the image with
certain words, and are scored based on the number of words matching those used in the
annotation by the other player. Corresponding annotations are assumed to be reliable.
By repeating the game with different players, the system finally extracts reliable words
as the ground truth. Similarly, Peekaboom [190] provides a game for object region
labeling. Thus, by minimizing the effort of image labeling, these works have succeeded
in building large-scale datasets consisting of millions of images. However, since most
players’ objective is merely to play the game, the quality of the annotations is not
always high. Moreover, user annotations tend to be limited to common words and lack
diversity, which is a serious problem if we want a versatile system.

The Lotus Hill dataset [212], provided by ImageParsing.com, is a large-scale multi-
purpose image dataset constructed by paid human experts. By hiring human experts,
this dataset guarantees high quality and detailed annotations compared to other datasets.
However, since human resources are more or less limited, it is difficult to handle fur-
ther large-scale data. Moreover, because the greater part of the dataset is not free, it is
not always of benefit to academic studies.

Recently, Amazon Mechanical Turk (AMT) [173] has attracted much attention as a
breakthrough. AMT is an online job posting service, through which anonymous work-
ers can be employed for image labeling. Depending on the task and salary, certain mo-
tivated workers might participate in labeling. Moreover, since we can arbitrarily design
the labeling task, we can construct various datasets for each research objective. AMT
has already been used in many studies, with the biggest project being ImageNet [46].
The ImageNet dataset is still under construction based on the WordNet ontology [58].
At present (February 2011), it has 12 million images of 17,624 classes. In ECCV 2010,
Deng et al. [45] reported classifying 10,000 categories using ImageNet data. Also, a
workshop for large-scale image recognition was held, where participants worked on
classifying 1,000 categories [13]. This is significant in that generic image recognition
on this scale is now able to be evaluated quantitatively. As a further example of an
AMT based dataset, Xiao et al. published the SUN dataset [207] consisting of 800
scene categories.

Web image mining

Thanks to crowd sourcing, we can now obtain comparatively large-scale supervised
datasets. Still, dataset construction depends on human workers and the amount of
processable data is limited. In fact, far more data are available on the Internet, with the
amount growing by the day. For example, by 2010, more than four billion images were
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stored in Flickr [197]. Google has indexed even more images. Web images are often
accompanied by some semantic information such as a text document. It is expected that
we can use such image-text data for training image recognition systems. This approach
is called web image mining [60; 206; 228]. The system could learn a broad picture of
the world as there are an infinite number of images taken under various conditions and
environments on the Internet. Also, because semantic information attached to images
was prepared by many different people, the system might be able to extract “common
knowledge” for image understanding that can satisfy everyone.

In the natural language processing field, large-scale statistical learning using web
data has been studied since the early 2000s [6]. It has been shown that performance
improves proportional to the log number of training samples. Probably the first work
in the computer vision field is AnnoSearch [196]. This system provides a collaborative
annotation framework, where users need to input at least one exact keyword describing
the query image. However, effective tasks for this approach are limited because user-
provided keywords are not always available.

Regarding fully automatic image recognition, many methods are based on classi-
cal text-based image search engines. Specifically, a target word is used as the query
for image retrieval. Then, retrieved images are used as positive examples of the word
class. In this approach, we need to design classes that the system learns. In the begin-
ning, several classes were selected experimentally [60; 228]. Recently, many works
have made use of the WordNet ontology [58] to construct universal image dictionar-
ies [46; 177]. Furthermore, some works exploit data-driven ontologies such as the
Normalized Google Distance [38] and Flickr Distance [206] to realize fully automatic
image knowledge acquisition.

A problem, however, is that the performance of text-based image search engines
could be the bottleneck. Since it is difficult for current engines to exploit ontologies
efficiently, each word is simply used as a query in many cases. In reality, it is very
difficult to obtain a high-quality dataset, because many irrelevant images may be in-
cluded due to homographs and noise. To address this problem, some early works
proposed filtering methods such as rank-based filtering [60; 118], denoising via clus-
tering [228], and visual similarity based filtering [118]. However, since the bottleneck
is the accuracy of the search engines, it is difficult to improve the quality with ad-hoc
post-processing. Therefore, many approaches have been proposed to obtain a high-
quality dataset from the Internet, including interactive learning [14], online learning
based on a semi-supervised framework [110], re-ranking using both visual and textual
similarities [163], and spam tag filtering [53].

In spite of the above mentioned problems, web image mining has attracted more
and more attention due to its ability of realizing extremely large datasets. Torralba et
al. [177] downloaded 80 million images and performed k-nearest neighbor classifica-
tion using simple image features. Despite the high noise ratio, annotation accuracy has
consistently improved in proportion to the log number of training samples. Torralba et
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al. reported that as the number of samples increases, the probability of finding a visu-
ally similar image also increases. Moreover, if the visual similarity exceeds a certain
threshold, the probability of the images belonging to the same semantic category grows
rapidly. The same phenomenon was observed in the ARISTA project [197], in which
image annotation was conducted using two billion Internet images. This means that vi-
sual distance approaches semantic distance as the size of the dataset grows. Therefore,
using web-scale training data is now considered one of the most promising approaches
to bridge the semantic gap.

2.4 Designing the Image Recognition Method
In this chapter, we have discussed the current status of generic image recognition,
where the semantic gap is a fundamental unsolved problem. The key to bridging the
semantic gap is statistical machine learning using a large number of examples. Thus,
learning methods and training datasets are equally indispensable factors and both of
these must be considered in the design of a recognition system.

Although there are many tasks in generic image recognition, none has reached a
practical level. This is mainly due to the lack of large-scale datasets to train a versatile
recognition system. However, weakly labeled datasets, in which each image is globally
labeled with certain words, are now growing exponentially owing to the advances in
crowd sourcing and web mining technologies. Therefore, global labeling methods are
now making considerable progress.

Moreover, global labeling methods can be useful to region labeling methods such
as detection. Since detection is a high cost process in general, it is impractical to scan
detectors of all target objects. Therefore, preprocessing to limit possible objects and
scanning areas is important. It is expected that we can do this with global labeling
methods that provide a rough description of an image in a short time.

Based on this background, we tackle the problem of global image labeling. We
believe this is now the most important step in constructing practical generic image
recognition systems. We require the following properties for our system.

1. Supports a framework of labeling a single image with multiple words. Here, the
system should be able to learn from a weakly labeled dataset1.

2. Relaxes the semantic gap using “contexts” represented by multiple labels.

3. Is scalable with respect to the number of training samples for both training and
recognition.

To reach this goal, we focus on the following two challenges.
1(1) The absence of a label does not necessarily mean that the corresponding concept is not present

in an image. (2) The correspondence between labels and image regions is not shown.
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2.4.1 Tackling the Image Annotation Task

Our goal is to recognize unconstrained real-world images. In general, real-world im-
ages are miscellaneous and ambiguous, with various objects and scenes as their con-
tent. Take the upper-left image in Figure 2.4 as an example. What labels are likely to
be used in annotating this image? There are many choices depending on one’s sub-
jectivity such as “sunset,” and “water”, although a rough understanding of the scene
would be similar. Moreover, on a photo sharing site like Flickr, many adjectives and
impression terms also appear such as “beautiful,” and “impressive.” The ground truth
labels of this image are: “clouds,” “sea,” “sun,” and “tree.” All these words describe
the image from a certain viewpoint, and can be said to be correct. Thus, ambiguity and
redundancy problems are essential for generic image recognition. Recognition systems
should flexibly learn from such data. This is the problem that is addressed in the field
of image annotation.

Further, it should be noted that categorization is a specific case of annotation. In
other words, if only one label is attached to each image, they become equivalent.
Therefore, annotation methods can also be applied to the categorization problem with-
out loss of generality. On the contrary, it is difficult to use categorization methods for
the annotation problem, since they explicitly utilize the constraint that each sample has
only one label. We discuss this further in Section 3.1.

For these reasons, we believe image annotation is the most important problem to
be addressed.

2.4.2 Scalability for a Large-scale Training Corpus

As previously mentioned, the key to successful recognition systems is statistical learn-
ing using a large number of examples obtained by crowd sourcing or web mining.
Moreover, the system should repeatedly learn from data when qualitatively new sam-
ples are added. However, because previous methods have emphasized recognition ac-
curacy on small toy datasets, they generally lack scalability. It is practically impossible
to apply these methods to web-scale problems. Therefore, we must develop an efficient
method that is scalable enough to tackle this problem. Since recognition accuracy and
computational costs are generally a trade-off, it is important to balance them at a high
level.

To realize large-scale training, we must consider two factors: computational com-
plexity and memory use. To relax computational complexity, one may wish to use
simple linear classifiers that scale linearly in the number of training samples. How-
ever, using only linear classifiers is actually far from adequate in real problems. First,
many practically used image features are embedded in non-linear manifolds. If we
merely apply linear learning methods to these features, we cannot benefit from large-
scale data. Furthermore, because existing linear methods often need to access data
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2.4. Designing the Image Recognition Method

iteratively, without sufficient memory, they require disk access during training. Since
large-scale data rarely fit in the available memory, the time needed for disk access in-
evitably becomes a serious bottleneck [214]. Considering that the speed of storage
devices has not increased at the same rate as CPUs, this problem is not negligible.
Thus, large-scale training is a highly challenging task. We need to carefully design our
algorithm to overcome the above mentioned problems.

22



Chapter 3

Related Work in Image Annotation

3.1 Previous Work

3.1.1 Region-based Generative Model

Currently, the aim of image annotation is to label a whole image, rather than region
labeling. However, image annotation started with a region based approach [50; 133],
the objective of which is to estimate the correspondence between a label and a region.

The word-image co-occurrence model [133] is a pioneering work. First, images are
divided into grids of different resolutions. Then, some basic image features (e.g. color
histograms and edge histograms) are extracted from each region. We refer to these as
region features. Next, all region features from the training corpus are clustered into
groups (clusters). It is expected that each cluster has visually similar region features.
By taking the co-occurrence of region features and labels in each cluster, we estimate
the posterior probability of each word. Although this is a simple method, it has the
basic structure of the region based annotation approaches that flourished in the last
decade.

Thereafter, the “blobworld” [32] approach, in which an image is represented by
several region features (blobs), was applied to image annotation. While this is basically
similar to the co-occurrence model, it differs in that it is based on image segmentation
methods. The most well-known early work is the word-image translation model [50],
which exploits a statistical machine translation method [27] for the image annotation
problem. First, region segmentation is performed via normalized-cut [166]. Next,
blobs are extracted from each region. These are vector quantized via clustering in
the same manner as the co-occurrence model. The translation model assumes vector-
quantized blobs as image-side “words”1, and attempts to translate them into text words.

1Note that “blob” here means a vector-quantized region feature, although some previous works
exploit raw region features [7; 9].
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The translation model uses the EM algorithm to estimate the posterior probability of
words for given blobs, whereas the co-occurrence model merely exploits co-occurrence
frequencies. Similarly, in [89] another statistical translation method was presented
based on maximum entropy [15] which reported greater annotation accuracy than that
of the translation model.

The machine translation approach assumes that each blob has a one-to-one relation
with a word. However, this assumption does not always hold in real problems because
blobs are generated in a bottom-up manner. Therefore, it is important to model the
entire relationship between multiple blobs and multiple words within an image. The
Cross-Media Relevance Model (CMRM) [88] does this using a sample-based joint
model. The CMRM is an application of a cross-lingual relevance model [104] for im-
age annotation problems. Each image is represented by a histogram of its blobs. A
query image is annotated using the weighted average of training labels of the similar-
ity of blob histograms. Intuitively, this is similar to a k-nearest neighbor classification
using blob histograms as the image features. In this sense, the CMRM is interpreted
as an early example of a non-parametric approach, which is the current mainstream
approach. Meanwhile, unlike the translation model, the CMRM cannot annotate re-
gions because it does not model the blob-to-word relation explicitly. Nevertheless, this
approach was shown to achieve high performance, probably because it is well-suited
to estimating global image similarities.

The co-occurrence model, translation model, and CMRM are all blob-based meth-
ods, where region features are quantized as blobs. However, in practice, blob-based
methods could cause performance to deteriorate owing to quantization errors. The
Continuous Relevance Model (CRM) [105] was the turning point in this respect. Both
the CRM and CMRM basically follow the same approach as illustrated in Figure 3.1,
where an image and words are connected using the instances of training samples. The
major difference is that the CRM uses raw region features directly for computing sam-
ple similarities. In other words, similarity between a query and a training sample is
computed in terms of the product of the similarities of their region features. It is in-
teresting that the CMRM significantly improves performance compared with previous
methods, while the implementation is simpler because it does not require clustering or
vector quantization to compute blobs.

In the CRM, the initial region segmentation depends on a Normalized-cut [166].
However, a fundamental problem is that annotation accuracy is strongly influenced by
the performance of the region segmentation. This means that the segmentation process
could be the bottleneck for the entire system. Therefore, in CRM-Rectangles [59] the
segmentation process was replaced by simple grids, and achieved better performance
than the original CRM. The Multiple Bernoulli Relevance Model (MBRM) [59], which
is an updated version of the CRM, also exploits grids for region separation. In addi-
tion, [127] further exploits the Inference Network (InfNet)[181] scheme, which is a
technique to formulate query operators (e.g. AND, OR) explicitly in a graphical model.
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Figure 3.1: Graphical model of the CRM and MBRM. Credit: Feng et al. [59].

Despite the CRM and MBRM being rooted in region-based approaches, today they
are often interpreted as the earliest non-parametric works. In fact, after the CRM and
MBRM, the research trend changed from region-based approaches to non-parametric
approaches. In this sense, they are milestone works in the history of image annotation.

Below, we present the algorithms for the CRM and MBRM. In these methods,
images are first partitioned into n regions. An image is then represented by its re-
gion features X = {x1, x2..., xn}. In the experiments, images are divided into 5×5 tiles
(n=25). Also, we let w = {w1, ..., wq} denote sample labels, where each wi is a word.

The joint probability P(X,w) can be represented by averaging over the training
samples as follows.

P(X,w) =
∑
J∈T

P(J)P(X,w|J) =
∑
J∈T

P(J)P(X|J)P(w|J), (3.1)

where T is the training dataset and J represents a sample. We assume conditional
independence of X and w for a given J. For simplicity, the prior probability of samples
is set to a constant. Specifically, letting N denote the number of training images,

P(J) =
1
N
. (3.2)

The conditional probability of X for a given J is defined as follows.

P(X|J) =
n∏

i=1

P(xi|J). (3.3)

Specifically, we assume region features are conditionally independent of J. The con-
ditional probability of a region feature is defined as follows.

P(x|J) =
1
n

n∑
j=1

exp {−(x − xJ
j )

TΣ−1(x − xJ
j )}√

2kπk|Σ|
, (3.4)
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3.1. Previous Work

where Σ = βI. β is the bandwidth of the kernels.
The CRM and MBRM share the same model as described above. The main differ-

ence is the implementation of the language model P(w|J) as given below.

PCRM(w|J) =
∏
w∈w

P(w|J), (3.5)

PMBRM(w|J) =
∏
w∈w

P(w|J)
∏
w<w

(1 − P(w|J)). (3.6)

P(w|J) is common to both methods, that is,

P(w|J) = µ
δw,J

NJ
+ (1 − µ)

Nw

NW
, (3.7)

where NJ is the number of ground truth labels in J, Nw is the number of images that
contain w in the training dataset, δw,J is one if label w is annotated in training sample
J, otherwise zero, and µ is a parameter between zero and one. As µ approaches one,
each sample label is more emphasized.

3.1.2 Local Patch Based Generative Model
In a region based approach, we consider a joint generative model for region features
and words. Here, we consider a model for local features and words. Since a local fea-
ture can be interpreted as the region feature of a small region, a patch based approach
is somewhat analogous to a region based approach. However, whereas an image is
represented using only several region features in a region based approach, we need to
describe each image using thousands of local features. Therefore, we need to consider
efficient implementations to deal with the substantial computational costs.

Figure 3.2 illustrates the algorithm for Supervised Multiclass Labeling (SML) [29;
30; 31], a representative example of this approach. First, the system models the dis-
tribution of local features of each image with a Gaussian mixture model. Then, by
averaging the distributions over all samples with the targeted word, it obtains a gener-
ative model of local features specific to the word. Because SML trains a large-scale
parametric model, training would quickly become infeasible as the numbers of images
and words increase. Still, it is scientifically important to attempt to train a local feature
based generative model; such a work was a major interest in the community.

3.1.3 Binary Classification Approach
This is one of the most classical approaches, along with the region based one. Classi-
fiers are constructed independently for each word class, while annotations are sorted
with respect to the response of each classifier. This strategy is called the one-versus-all
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Figure 3.2: Illustration of SML. Credit: Carneiro et al. [29].
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approach, which is frequently used for categorization tasks. It has also been applied
to image annotation tasks. For example, the Support Vector Machine (SVM) [41] and
Bayes point machine [34] are commonly referred to in the literature. Although the
SML also builds word-specific classifiers, a major difference is that these methods
follow a discriminative approach, whereas the SML is a generative method.

A problem with these methods is that they do not consider between-word depen-
dencies. In the annotation framework, several words are used as labels for a single im-
age. These words are thought to be mutually correlated. For example, “sky,” “clouds,”
and “sun” often appear together in an image. A binary classification approach neglects
such dependencies and leads to a redundant model. Since the importance of context
described by multiple words has been pointed out in recent works, the simple binary
classification approach is now considered unsuitable for annotation problems.

In [119] a method to exploit multiple words via matrix factorization was presented.
This method first derives a semantic subspace shared by all classes, and then trains
SVM classifiers in the subspace for each class. With this approach, annotation perfor-
mance is substantially improved compared to conventional SVM based methods.

In addition, in the field of attribute-based object recognition, which has attracted
much attention recently, some methods exploit the co-occurrence information of sev-
eral properties of an object (e.g. object name, color, texture) in training binary classi-
fiers [193]. However, they assume that each property corresponds to the same region
in an image. This assumption does not always hold in image annotation problems and
therefore, it is difficult to apply this approach to image annotation.

3.1.4 Graph-based Approach
Graph-based image captioning (GCap) [146; 147] constructs an undirected graph as
follows. First, region features and labels in an instance (image) are connected to the
instance itself. Then each region feature is connected to neighboring region features in
the whole training dataset. A query image is connected to this graph using its region
features. Annotation is then carried out by means of a random walk, taking the query
itself as the starting point. More specifically, annotations are ranked by stationary
probability.

The adaptive graph-based annotation method (AGAnn) [117] uses global image
features for graph construction, rather than region features. A graph construction
method, called the nearest spanning chain (NSC), which can adapt to local structures
of data distributions, was proposed for the AGAnn. The benefit of this method is that
it is less sensitive to parameters compared to general k-NN based methods. Each in-
stance is represented as a node on a connected graph. By propagating sample labels
on this graph, annotation results can be estimated. The two-phrase Graph Learning
Method (TGLM) [116] improves annotation accuracy by employing a graph based on
word similarities in addition to one based on image similarities. Word similarities
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can be estimated not only from manually prepared training datasets, but also from the
Internet.

The core of graph-based methods is to propagate labels of training samples similar
to a query. In this sense, they are relatively similar to non-parametric methods.

3.1.5 Regression Approach
If a regression model of words can be constructed, we can perform annotation by a sim-
ple projection. In [224], annotation is conducted using a linear projection obtained by
canonical correlation analysis. Further, in [225], linear regression models are trained
to predict the area of each object in an image. However, it is difficult to model corre-
spondence between image features and labels using a simple linear method.

In [74], Kernel Canonical Correlation Analysis (KCCA) is used to build a non-
linear regression model. Further, in [209], multiple kernel learning [103] is applied
to KCCA and Kernel Multiple Linear Regression (KMLR) to construct a powerful re-
gression model. In addition, a non-parametric annotation rule is proposed that utilizes
the projected point of a query image. However, in general, kernel methods seriously
lack scalability as discussed earlier in this thesis.

3.1.6 Topic Model Approach
Topic models have been developed mainly by the natural language processing commu-
nity. They have successfully been applied to clustering and data mining of text docu-
ments. Latent Semantic Analysis (LSA) [44], probabilistic Latent Semantic Analysis
(pLSA) [79], and Latent Dirichlet Allocation (LDA) [20] are representative methods.
These models have also been applied to the problem of image recognition. While the
original topic models contended with the problem of one modal compression (text),
we need to consider two modals (image and words) for image recognition.

In this framework, we consider the graphical model illustrated in Figure 3.3. We
assume an unobserved latent node l above the image and words. A latent variable is
first selected, and then it generates the image and words. Here, we impose the naive
Bayes assumption that x and w are conditionally independent for a given l. The joint
probability of image features and words are represented as follows.

P(x,w) =
∫

P(x,w|l) P(l) dl (3.8)

=

∫
P(x|l) P(w|l) P(l) dl. (3.9)

Here, we exploit the assumption of conditional independence P(x|w, l) = P(x|l).
A latent variable can be interpreted as a “topic” that captures an essential relation-

ship between an image and its words. As shown, the image and words are modeled
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Figure 3.3: A topic model for image annotation.

by a mixture of probabilistic distributions generated from each topic. By averaging in
terms of topics, it is expected that we can represent a complex structure of images and
words with relatively simple density functions.

For example, in the real world, there are many “fish” images belonging to different
topics, such as the “sea” or “food” topic. Although they are all “fish”, their appearances
would differ widely depending on their topics. This fact makes it difficult to estimate
the “fish” model directly. In contrast, it would be easier to estimate a topic-specific
“fish” model since within-topic images are expected to be similar. Thus, we can obtain
the final “fish” model as a mixture of topic-specific models.

The essential problem is, how to define a latent variable (topic) and estimate it.
Ref. [7; 9] hierarchically clusters blobs and words using the EM algorithm. Each clus-
ter serves as a latent variable and generates image features and words with a Gaussian
distribution and a multinomial distribution, respectively. However, the model lacks
flexibility because all region features and words within a sample are exclusively gen-
erated by one topic.

To address this problem, [8; 19] proposed several models based on LDA. Gaussian-
Multinomial LDA (GM-LDA), a baseline method, samples the latent variables of each
region feature and word using a multinomial distribution specific to each sample. Pa-
rameters of multinomial distributions are sampled with a Dirichlet distribution, which
is tuned with a hyper parameter. With this model, it is possible to represent multi-
ple region features and words within a sample as a mixture of multiple topics. This
property makes the model highly expressive. Also, GM-LDA can perform region la-
beling. However, because latent variables of region features and words are randomly
generated, their dependency is not explicitly considered. While GM-LDA is suited to a
word-image generative model, it is not always effective for image annotation problems
where the posterior probabilities of words are important. As a solution, Multi-Modal
Latent Dirichlet Allocation (MoM-LDA) explicitly models a cross-modal dependency
of latent variables. It achieved better performance than GM-LDA.
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More recently, LDA has eagerly been studied for application to image recognition.
For example, in [57], LDA was used to classify 13 scene classes, while in [208] a
hierarchical extension of MoM-LDA was proposed and applied to image annotation.

Besides LDA, pLSA is also a representative method of topic models. Although the
original pLSA was developed earlier than LDA, their applications to image recogni-
tion were published around the same time. Ref. [129] simply concatenates an image
feature vector and a text feature vector, and applies original LSA and pLSA to it. How-
ever, since query images do not have associated text, we cannot immediately perform
annotation. Although the method in [129] heuristically placed zeros in the text, its
theoretical basis is unclear. Moreover, it has been pointed out that the learned result
of this model is almost equal to that of a text-only model, because text features are far
more descriptive than image features in general. Ref. [130] improved the performance
by introducing an asymmetric model, where the topic of each document is estimated
using text features only. Details of these methods are summarized in [131].

pLSA has been studied in many works. In particular, it has attracted much attention
since the bag-of-visual-words [40] technique was established. This method enabled
images to be interpreted in the same manner as for text documents, making a pLSA
based approach more reasonable. Ref. [23; 25] employed pLSA for dimensionality re-
duction and achieved good performance in scene classification. Ref. [114] investigated
large-scale pLSA methods and applied them to image retrieval, while [113] proposed
a multimodal pLSA, which is a hierarchical combination of modal-specific pLSAs.

3.1.7 Non-parametric Approach
This approach uses the training labels of neighboring samples of a query image di-
rectly, and is represented by a classical k-NN classifier. As mentioned in Section 3.1.1,
CRM [105] and MBRM [59] are early examples of non-parametric methods. Despite
their simplicity, they showed surprisingly high performance in annotation. Since then,
many other methods have been proposed in this direction. Non-parametric Density
Estimation (NPDE) [213] uses global image features for kernel density estimation.
Correlated Label Propagation (CLP) [92] and Context-Based Keyword Propagation
(CBKP) [122] are label propagation methods that consider co-occurrences. Also, the
Dual Cross-Media Relevance Model (DCMRM) [118] exploits not only training la-
bels, but also external ontologies to improve performance. Multi-label Sparse Coding
(MSC) [191] uses a sparse coding technique to compute similarities between a query
and the training samples.

Recent works have shown that we can substantially improve annotation accuracy
by incorporating multiple image features. For example, Makadia et al. proposed the
Joint Equal Contribution (JEC) method [125], which exploits multiple visual features
(e.g. color histograms and Haar wavelets) to improve performance. For each feature,
a base distance is defined using an appropriate metric in the feature space (e.g. χ2 dis-
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tance for color histograms and L1 distance for Haar wavelets). Then, all the base dis-
tances are concatenated with equal weights to retrieve the nearest neighbors. Despite
its simplicity, JEC achieved the best performance as of 2008. Furthermore, Guillau-
min et al. proposed TagProp [71], which realizes state-of-the-art performance. This
method makes use of 15 powerful global and local features, including bag-of-visual-
words [40] and GIST features [144], amongst others. TagProp differs from JEC in that
the weights for the base distances are optimized in the metric learning framework by
directly maximizing the log-likelihood of the tag prediction.

The success of these methods is thought-provoking, and is somewhat analogous
to that of the multiple kernel learning [103] approach in categorization tasks. The key
issue here for improving performance is to employ rich visual features with appropriate
distance metrics defined in raw feature spaces.

3.1.8 Summary

First, we compare the annotation accuracy of previous works. In the field of image
annotation, Corel5K [50] has been used as the de-facto standard benchmark dataset for
a long time. For details of Corel5K, refer to Chapter 5. Performance is evaluated with
mainly three scores: mean recall (MR), mean precision (MP), and F-measure. Higher
scores imply greater annotation accuracy. For details, refer to Appendix A.

Table 3.1 summarizes the scores of previous studies. Scores are shown in ascending
order of F-measure, while the names of non-parametric methods are given in bold face.
As illustrated, non-parametric methods have historically achieved good performance.
Although we cannot compare the scores directly because each method uses different
image features, it is interesting that the state-of-the-art methods developed after JEC
all follow a non-parametric approach.

The superiority of non-parametric methods is due to the nature of the image an-
notation task, where the system outputs multiple words for a single image. Unlike
the exclusive categorization task, words are mutually correlated in the annotation task.
Therefore, we need to consider co-occurrence information of labels in the dataset.
Non-parametric methods can do this implicitly by directly using the sample labels.
Moreover, since image annotation is a highly generic task that needs to model a com-
plex probabilistic distribution, parametric methods tend to become more complicated
since a number of parameters must be estimated. In contrast, non-parametric meth-
ods are relatively stable since they estimate a distribution in an example-based manner.
Moreover, they can accept qualitatively new samples instantly by merely adding them
to the dictionary. For these reasons, we believe that non-parametric image annotation
is the most practical methodology. In the remainder of this thesis, we develop our
image annotation method based on this approach.
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Table 3.1: Performance of previous works using Corel5K.
Year MR MP F-m N+ MAP MAP (R+)

Co-occurrence [133] 1999 0.02 0.03 0.02 19 - -
Translation [50] 2002 0.04 0.06 0.05 49 - -
CMRM [88] 2003 0.09 0.10 0.09 66 0.17 -
Maximum Entropy [89] 2004 0.12 0.09 0.11 - - -
CRM [105] 2003 0.19 0.16 0.17 107 0.24 -
NPDE [213] 2005 0.18 0.21 0.19 114 - -
InfNet [127] 2004 0.24 0.17 0.20 112 0.26 -
CRM-Rectangles [59] 2004 0.23 0.22 0.23 119 0.26 0.30
Independent SVMs [119] 2008 0.22 0.25 0.23 - - -
MBRM [59] 2004 0.25 0.24 0.25 122 0.30 0.35
AGAnn [117] 2006 0.27 0.24 0.25 126 - -
SML [29] 2007 0.29 0.23 0.26 137 0.31 0.49
DCMRM [118] 2007 0.28 0.23 0.26 135 - -
TGLM [116] 2009 0.29 0.25 0.27 131 - -
MSC [191] 2009 0.32 0.25 0.28 136 0.42 0.79
Matrix Factorization [119] 2008 0.29 0.29 0.29 - - -
JEC [125] 2008 0.32 0.27 0.29 139 0.33 0.52
CBKP [122] 2009 0.33 0.29 0.31 142 - -
Group Sparsity [220] 2010 0.33 0.30 0.31 146 - -
TagProp [71] 2009 0.42 0.33 0.37 160 0.42 -
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3.2 Bridging the Semantic Gap for Non-parametric Im-
age Annotation

As shown in a previous section, an example-based non-parametric approach is effective
for the image annotation problem. However, two major problems need to be addressed.

The first one is the semantic gap which we discussed in Section 2.2. In general,
similarity between samples is evaluated by the distance between image features. How-
ever, low-level image features are not necessarily related to the meanings of images.
To address this problem, we need to use as many training samples as possible. Further-
more, the system must learn a discriminative distance metric using label information
provided by humans in a machine learning framework.

The second problem is that the computational costs, of both complexity and mem-
ory use, tend to be high with the growth of the training datasets. In general, image
representations need to be high-dimensional to build a versatile system1. A non-
parametric method must store all training instances in memory to compute their re-
spective distances from the input queries. This cost becomes prohibitive when high-
dimensional features and a large number of training samples are used.

For these reasons, we require a method that performs both dimensionality reduc-
tion and discriminative metric learning. With this in mind, we summarize the related
methods in this section.

3.2.1 Distance Metric Learning

Let x ∈ Rp denote an input feature vector in the original feature space. For simplicity,
we assume that the image features are originally embedded in a Euclidean space2.
Without any prior knowledge, the distance between two samples i, j is computed by
the Euclidean distance.

distE(i, j) =
√

(xi − x j)T (xi − x j). (3.10)

Mahalanobis distance metric learning (MDML) is a framework to learn the Maha-
lanobis distance defined by a positive semi-definite symmetric matrix M as follows.

distM(i, j) =
√

(xi − x j)T M(xi − x j). (3.11)

We can rewrite M = WWT using a Cholesky decomposition. Therefore, Equation 3.11
can be interpreted as the Euclidean distance in a new space (subspace) defined by the

1For example, TagProp uses 15 features, resulting in more than 37,000 dimensions.
2Without loss of generality, we can derive non-linear extensions using kernel methods.
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projection W. In fact, classical dimensionality reduction methods (e.g. PCA) empir-
ically do exactly this. MDML presents a generic framework from the viewpoint of
defining similarity between samples.

The definition of M is dependent on the objective of the task. For each task, M
is trained by optimizing a task-specific evaluation function. For example, Locality
Preserving Projections (LPP) [76], a typical manifold learning method, attempts to
preserve local neighborhood structures in the original space. Our goal is to learn a
discriminative distance metric that relaxes the semantic gap with the help of label in-
formation. Next we introduce previous methods related to this issue.

Basically, discriminative MDML methods are designed for k-nearest neighbor clas-
sification. Neighborhood Components Analysis (NCA) [67], a pioneering work, learns
the metric so that the leave-one-out k-NN classification score in the training dataset can
be maximized. Maximally Collapsing Metric Learning (MCML) [66] designs a con-
vex evaluation function that forces within-class samples to be mapped to the same
point, while out-of-class samples are placed at an infinite distance. Similarly, Large
Margin Nearest Neighbor (LMNN) [200] optimizes the metric so that k neighboring
samples of each training sample belong to the same class, while out-of-class samples
are placed as far away as possible. Fast-LMNN [201], a speeded up version of LMNN,
has also been proposed, while Information-Theoretic Metric Learning (ITML) [43]
exploits prior knowledge in a information-theoretic manner by introducing a Gaussian
distribution specific to M and optimizes its LogDet divergence.

Additionally, there are many MDML methods designed for various tasks other than
k-nearest neighbor classification. For example, ranking-based distance metric learn-
ing [192] is designed for similar image retrieval. This method learns the metric using
the accuracy of ranked retrieval as the evaluation function. Also, [36; 169] incremen-
tally learns the metric exploiting the user log data in retrieval. Thus, MDML has been
successfully applied to many tasks including similar image search [36; 80; 87; 192] and
facial image recognition [72]. Moreover, more recently, local distance metric learn-
ing [63; 64; 157; 192], a technique to train different Mahalanobis distance metrics
in each local area in the feature space, has been thoroughly studied, although this is
beyond the scope of this discussion.

The advantage of the above mentioned MDML methods is that they can train the
distance metric explicitly utilizing local structures of data distributions. However, they
also have some disadvantages. First, they lack scalability. Many methods are based
on pair-wise or triplet-wise computation for training. The training costs are inevitably
O(N2) ∼ O(N3) (where N is the number of training samples). Second, they do not
consider dimensionality reduction explicitly. Although dimensionality reduction can
be performed by forcing a low-rank constraint on W, retraining is necessary to change
the dimensionality. Furthermore, since most of the methods iteratively access training
data, they will inevitably have to deal with the memory problem in true large-scale set-
tings as discussed in Section 2.4.2. Considering these problems, we focus on MDML
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based on simple linear dimensionality reduction methods as described below.

3.2.2 Bimodal Dimensionality Reduction Methods
The dimensionality reduction methods discussed here can be interpreted as simple
MDML using a global evaluation function. They are suitable for our objective for the
following reasons.

• Training complexity is O(N), where N is the number of training samples.

• Memory use for training is constant in N.

• Iterative access to training data is not necessary.

• A global optimal solution is analytically obtained.

• Dimensionality can be set arbitrarily once the training phase is done.

Suppose we have a p-dimensional image feature x, and a q-dimensional label
feature y. Suppose also, that we have N labeled training samples {xi, yi}Ni=1. We let

C =
(
Cxx Cxy

Cyx Cyy

)
denote the sample covariance matrix obtained from the training dataset,

where

Cxx =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T , (3.12)

Cyy =
1
N

N∑
i=1

(yi − ȳ)(yi − ȳ)T , (3.13)

Cxy =
1
N

N∑
i=1

(xi − x̄)(yi − ȳ)T , (3.14)

Cyx = CT
xy, (3.15)

In the above equations, x̄ and ȳ denote the sample means. The objective is to obtain
a new d-dimensional small vector r (d � p), whose distance metric could be the L2
distance. We call this the compressed feature.

Partial Least Squares (PLS)

Partial least squares (PLS) [204] is a common tool for multi-modal dimensionality
compression. It finds linear transformations sPLS = VT

x (x − x̄) and tPLS = VT
y (y − ȳ) that
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maximize the covariance between the new values sPLS and tPLS . The projection matrices
Vx and Vy are obtained by the following eigenvalue problems:

CxyCyxVx = VxΘ (VT
x Vx = Id), (3.16)

CyxCxyVy = VyΘ (VT
y Vy = Id). (3.17)

where Θ is a diagonal matrix with eigenvalues as elements. A latent vector is obtained
by rPLS = VT

x (x − x̄). Therefore, the new distance metric obtained via PLS is given by:

distPLS (i, j) =
√

(xi − x j)T VxVT
x (xi − x j). (3.18)

The result of PLS is strongly influenced by the variances of the original features.
Therefore, we also test PLS after normalizing the variances of the original feature
elements. Specifically, for image features, we perform the following normalization.

x′ = Σ−1
X (x − x̄), (3.19)

where ΣX is a diagonal matrix with the standard deviation of each feature as its ele-
ments. The same normalization is applied to label features. We refer to this as normal-
ized PLS (nPLS).

Although PLS is a classical method, it has been employed successfully in a state-of-
the-art human detection method [164]. The authors compressed 170,000-dimensional
features into 20-dimensional latent features without much deterioration in performance,
making large-scale training tractable. Whereas the semantic aspect (y-view) in [164]
is binary (human or non-human), we have multiple labels for a single image. These
labels are expected to provide rich semantic information.

Canonical Correlation Analysis (CCA)

CCA was first proposed by Hotelling [82] in 1936, and has hitherto been one of the
most basic and important multivariate analysis methods. CCA is closely related to
PLS. Whereas PLS finds the projections that maximize the covariance between the
two new values, CCA finds those that maximize the correlation. That is, it finds linear
transformations sCCA = VT

x (x − x̄) and tCCA = VT
y (y − ȳ) that maximize the correlation

between the new values sCCA and tCCA. Further details can be found in [22]. We obtain
projection matrices Ux and Uy by solving the following eigenvalue problems:

CxyC−1
yy CyxUx = CxxUxΛ

2 (UT
x CxxUx = Id), (3.20)

CyxC−1
xx CxyUy = CyyUyΛ

2 (UT
y CyyUy = Id). (3.21)

whereΛ is the diagonal matrix of the first d (min{p, q} ≥ d ≥ 1) canonical correlations.
A compressed feature is obtained by rCCA = UT

x (x − x̄). Therefore, the new distance
metric obtained via CCA is given by:

distCCA(i, j) =
√

(xi − x j)T UxUT
x (xi − x j). (3.22)
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CCA has been successfully employed in some previous studies on image annota-
tion [74; 209; 224]. The main focus in these studies, however, was to construct a strong
regression model using CCA or KCCA, rather than dimensionality compression. Our
objective is more similar to that of the correlational spectral clustering [18], in which
CCA and KCCA are used for unsupervised clustering of weakly coupled image-text
documents. The authors showed that the distance between instances can be estimated
more accurately in the latent space, despite the dimensionality thereof being substan-
tially reduced.

Multiple Linear Regression (MLR)

MLR is an intermediate method between PLS and CCA. It has an asymmetric structure
in which one of two modals is whitened. Usually, this method is used for regression,
as its name implies. In the case of image annotation, it is natural to take labels as
objective variables. The problem is formulized as the following eigenvalue problems.

CxyCyxWx = CxxWxΩ (WT
x CxxWx = Id), (3.23)

CyxC−1
xx CxyWy = WyΩ (WT

y Wy = Id). (3.24)

where Ω is the diagonal matrix of the first d eigenvalues. A compressed feature is
obtained as rMLR = WT

x (x− x̄). Thus, the distance metric obtained via MLR is given by:

distMLR(i, j) =
√

(xi − x j)T WxWT
x (xi − x j). (3.25)

As in the case of PLS, the result of MLR is influenced by the variance of objective
variables. Therefore, we also test performing MLR after normalizing the variance of
label features. We call this normalized MLR (nMLR).

Relation between PLS, CCA, and MLR

PLS, CCA, and MLR are closely related methods [22]. Actually, CCA and MLR
can be interpreted as performing PLS after a certain normalization of variables. We
summarize this relationship in Table 3.2. Also, Table 3.3 gives the training complexity
of each method. For fixed features, these methods scale to the number of training
samples with linear complexity, a property beneficial to large scale problems.

Efficient implementation

Because only covariance matrices are necessary for solving the eigenvalue problems of
the above mentioned methods, we do not have to preserve raw training data in memory.
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Table 3.2: Relationship between dimensionality reduction methods. All methods can
be interpreted as special cases of PLS.

Image features Label features Method
- - PLS

⇓
variance normalization variance normalization nPLS

whitening - MLR
whitening variance normalization nMLR
whitening whitening CCA

Table 3.3: Computational complexity of PCA, PLS, and CCA based methods: (1)
calculating covariances, (2) solving eigenvalue problems, and (3) projecting training
samples using the learned metric.

(1) (2) (3)
PCA O(N p2) O(p3) O(N pd)
PLS O(N pq) O(min{p2(p + q), (p + q)q2}) O(N pd)
MLR O(N(p2 + pq)) O(p3 + p2q) O(N pd)
CCA O(N(p2 + pq + q2)) O(p3 + q3 + p2q + pq2) O(N pd)

For example, regarding the following covariance matrix:

Cxx =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T , (3.26)

=
1
N

N∑
i=1

xixT
i − x̄x̄T , (3.27)

we can easily compute this by incrementally adding xi one by one. Overall, we need
to scan the training data only twice; once for computing covariances and once for
projecting the data.
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Chapter 4

Development of a Scalable Image
Annotation Method

In this chapter, we focus on the dimensionality reduction methods discussed in Sec-
tion 3.2.2. We develop a non-parametric image annotation method, which is com-
putationally efficient in terms of both training and recognition [138; 140; 226]. The
proposed method has the following advantages.

• Training complexity is linear in the number of training samples.

• It is not necessary to access data iteratively during training.

• Memory use for training is small and constant.

• During recognition, the cost of computing the sample distance is relatively small.

The core of our method is semantic dimensionality reduction together with similarity
measures obtained via probabilistic canonical correlation analysis.

4.1 Non-parametric Image Annotation
Suppose N training pairs Ti = {Ii, Li} (1 ≤ i ≤ N) are given. I is an image and L is
its corresponding label. Given a query (new image) IQ, we predict its labels using a
sample based classifier. In this work, we consider two approaches, namely, k-nearest
neighbor classification and MAP classification.

4.1.1 k-Nearest Neighbor Classification
The k-nearest neighbor algorithm is the most basic example of a non-parametric clas-
sification. Suppose a distance metric DIS T (IQ,Ti) that defines the distance between
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4.1. Non-parametric Image Annotation

a query IQ and a training sample Ti is given. According to this distance metric, the
system outputs the most frequent labels in the k retrieved neighbors.

4.1.2 MAP Classification
As a more generic implementation, we also introduce a sample based MAP classifier,
assuming that each sample constitutes a weak classifier. The posterior probability of a
word w can be expressed as follows.

P(w|IQ) =
N∑

i=1

P(w|Ti)P(Ti|IQ). (4.1)

Many previous works can be explained with this model.
In fact, k-nearest neighbor classification can be interpreted as a special case of

Equation 4.1. That is, they become equivalent if we assume

P(Ti|IQ) =
{

1/k If Ti is in the top k nearest neighbors of IQ,
0 otherwise. (4.2)

P(w|Ti) =
{

1 If w is given to sample Ti,
0 otherwise. (4.3)

Below, we describe the implementation of our method. P(Ti|IQ), which gives a
weight to each training sample (a weak classifier), is described in detail in the fol-
lowing sections. For P(w|Ti), we define a simple model in a top-down manner, like
CRM [105]. We combine the labels of each sample and the inverse document fre-
quency (IDF) of a word.

P(w|Ti) = µδw,Ti + (1 − µ)
log (N/Nw)

log N
, (4.4)

where Nw is the number of images that contain w in the training dataset, δw,Ti is one,
if the label w is annotated in the training sample Ti, otherwise zero, and µ is a param-
eter between zero and one. Further, the posterior probability of multiple words w is
expressed as follows.

P(w|Ti) =
∏
w∈w

P(w|Ti). (4.5)

As Equation 4.5 shows, each weak classifier formed by a sample treats word classes
independently and does not consider their co-occurrence. However, as a result of the
model definition of Equation 4.4, it gives large posterior probabilities for words that
occur simultaneously in a sample. Therefore, it is expected that by averaging all weak
classifiers as in Equation 4.1, our model can implicitly exploit the co-occurrence of
labels in the training dataset.
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4.2 Distance Metric Learning Using Probabilistic Canon-
ical Correlation Analysis

4.2.1 Canonical Correlation Analysis

We extract p-dimensional image features x, and q-dimensional label features y from
the training dataset {Ti}Ni=1. Then we have N training samples {xi, yi}Ni=1. For a detailed
explanation of CCA, refer to Section 3.2.2. Here, we define the terminology for our
method.

CCA finds linear transformations s = UT
x (x − x̄) and t = UT

y (y − ȳ) that maximize
the correlation between the new values s and t. Henceforth, we call s the image-side
canonical variable, and t the label-side canonical variable. Furthermore, we call the
corresponding feature spaces the image-side canonical space and label-side canonical
space, respectively. Λ is the diagonal matrix of the first d (min{p, q} ≥ d ≥ 1) canonical
correlations in descending order. During the learning of the canonical spaces, image
and label features work complementarily as the teaching signals for each other. As a
result, we can obtain subspaces capturing essential features both in terms of appearance
and semantics. It is expected that we can retrieve semantically similar samples using
the structure of CCA.

The simplest way to exploit the structure of CCA is to compute the distance be-
tween samples in the image-side canonical space. We call this framework CCAsim [142;
227]. For the distance metric used in the k-nearest neighbor algorithm, we use the Eu-
clidean distance.

DIS TCCA(IQ,Ti) = ||UT
x xQ − UT

x xi||. (4.6)

This is equivalent to Equation 3.22.
For MAP classification, we define the posterior probability of each sample using a

Gaussian distribution fitted to the query.

PCCA(Ti|IQ) =
exp

(
− 1

2 (si − sQ)TΣ−1(si − sQ)
)

∑N
j=1 exp

(
− 1

2 (s j − sQ)TΣ−1(s j − sQ)
) . (4.7)

Here Σ = αI (where I is a unit matrix). The denominator is a regularization term
such that

∑N
i=1 PCCA(Ti|IQ) = 1. α is a manually tuned parameter that determines the

smoothness.

4.2.2 Probabilistic Canonical Correlation Analysis

CCA only gives linear transformations Ux, Uy and the corresponding two canonical
spaces. It does not give any insight into the use of the canonical spaces or the distance

43



4.2. Distance Metric Learning Using Probabilistic Canonical Correlation
Analysis

x y

z
latent node

image feature label feature

Figure 4.1: Graphical model of PCCA.

metric between samples. Therefore, we heuristically used the Euclidean distance in
the image-side canonical space for DIS TCCA and PCCA.

In this respect, it has been proved that CCA has the following probabilistic struc-
ture [5] (Figure 4.1). This is called the probabilistic canonical correlation analysis
(PCCA) model.

z ∼ N(0, Id), min{p, q} ≥ d ≥ 1,

x | z ∼ N(Wx z + µx,Ψx),Wx ∈ Rp×d,Ψx � 0,

y | z ∼ N(Wy z + µy,Ψy),Wy ∈ Rq×d, Ψy � 0. (4.8)

Here, N is a Gaussian. Ψx � 0,Ψy � 0 indicate that Ψx and Ψy are positive semi-
definite matrices. z is an unobserved latent variable that generates x and y under the
assumption of conditional independence. d is the dimension of z (the same value as in
Equations 3.20 and 3.21). The maximum likelihood solution of this model basically
corresponds to the solution of normal CCA. Specifically, x and y are first projected
onto canonical variables s and t as in the normal CCA. PCCA further merges two
canonical variables using canonical correlations as a mapping to z. This mapping is
performed in a probabilistic manner, giving a Gaussian as the posterior probability.

The details are given below. Let Mx,My ∈ Rd×d denote arbitrary matrices such that
MxMT

y = Λ and the spectral norms of Mx and My are smaller than one.
If only an image feature x of the sample is given, p(z|x) becomes a Gaussian with

mean ż and variance Φx defined as:

ż = E(z | x) = MT
x UT

x (x − x̄), (4.9)
Φx = var(z | x) = I − MxMT

x . (4.10)

Similarly, if both an image feature x and a label feature y are given, we have

z̈ = E(z | x, y) =
(

Mx

My

)T ( (I − Λ2)−1 −(I − Λ2)−1Λ

−(I − Λ2)−1Λ (I − Λ2)−1

)(
UT

x (x − x̄)
UT

y (y − ȳ)

)
, (4.11)
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Φxy = var(z | x, y) = I −
(

Mx

My

)T ( (I − Λ2)−1 −(I − Λ2)−1Λ

−(I − Λ2)−1Λ (I − Λ2)−1

)(
Mx

My

)
. (4.12)

Mx and My have arbitrary properties for scale and rotation. Here, we define them
simply using the following diagonal matrices:

Mx = Λ
β, My = Λ

1−β (0 < β < 1). (4.13)

With this definition, Φx and Φxy are now diagonal. β is a parameter to balance the
contributions of the image and label features in estimating the latent variable.

4.2.3 Proposed Method: Canonical Contextual Distance

As described above, a sample forms a Gaussian in the latent space. Using this structure,
we can derive a probabilistically supported distance metric. We call this framework the
canonical contextual distance (CCD) [138; 140; 226].

Since each training sample consists of an image and labels, there are two possible
approaches. One considers only the image side in estimating the posterior probability
distribution of the latent variable (1-view CCD), while the other considers both image
and label sides (2-view CCD).

1-view CCD (CCD1)

As a distance metric for the k-nearest neighbor algorithm, let us consider the KL di-
vergence between a query xQ and a training sample {xi, yi} in the latent space. When
considering the x-view only (Figure 4.2(a)), this becomes:

DIS TCCD1(IQ,Ti) = KL
(
p(z|xQ), p(z|xi)

)
= ( żQ − żi)TΦ−1

x ( żQ − żi). (4.14)

This can be computed as the Euclidean distance of

rCCD1 = Φ
−1/2
x ż. (4.15)

As the posterior probability used in MAP classification, we use the integration of
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Figure 4.2: Illustration of canonical contextual distances. Estimation of distance be-
tween a query and training sample: (a) from the x-view only (CCD1); and (b) consid-
ering both the x- and y-views (CCD2).

the joint probability functions (the Bhattacharyya distance).

PCCD1(Ti|IQ) =

∫ √
p(z|xi)p(z|xQ)dz

N∑
j=1

∫ √
p(z|x j)p(z|xQ)dz

=

exp
(
−1

8
( żQ − żi)TΦ−1

x ( żQ − żi)
)

N∑
j=1

exp
(
−1

8
( żQ − ż j)TΦ−1

x ( żQ − ż j)
) , (4.16)

The denominator is a regularization term, such that
∑N

i=1 PCCD1(Ti|IQ) = 1.

2-view CCD (CCD2)

Unlike CCD1, we explicitly consider the contribution of labels in each sample for
the distance computation (Figure 4.2(b)). The KL divergence used in retrieving the
k-nearest neighbors is:

DIS TCCD2(IQ,Ti) = KL
(
p(z|xQ), p(z|xi, yi)

)
=

1
2

log
|Φxy|
|Φx|
− d

2
+

1
2

Tr(Φ−1
xyΦx) +

( żQ − z̈i)TΦ−1
xy ( żQ − z̈i). (4.17)
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Since the first three terms are constant, this can also be computed as the Euclidean
distance, defining

rQ
CCD2 = Φ

−1/2
xy żQ, (4.18)

ri
CCD2 = Φ

−1/2
xy z̈i, (4.19)

for a query and a training sample, respectively.
Similarly, the posterior probability used in MAP classification becomes:

PCCD2(Ti|IQ) =

∫ √
p(z|xi, yi)p(z|xQ)dz

N∑
j=1

∫ √
p(z|x j, y j)p(z|xQ)dz

=

exp

−1
8

( żQ − z̈i)T
(
Φx + Φxy

2

)−1

( żQ − z̈i)


N∑

j=1

exp

−1
8

( żQ − z̈ j)T
(
Φx + Φxy

2

)−1

( żQ − z̈ j)


, (4.20)

4.3 Embedding Non-linear Metrics of Image Features
Although PLS, MLR, and CCA can perform semantic dimensionality reduction effec-
tively, they have difficulty in dealing with specific features that have non-linear distance
metrics. In fact, it is known that for many practically used image features, we should
use a non-linear distance metric such as the χ2 distance or L1 distance.

In this case, we first embed the non-linear metrics in a Euclidean space via kernel
PCA (KPCA) [162]. Suppose a kernel function K(xi, x j) = 〈φ(xi), φ(x j)〉 is given,
where φ : x → φ(x) denotes the projection that maps an input vector onto a high-
dimensional feature space. Using randomly sampled nK (nK ≤ N) training samples,
we compute the kernel base vector as

kx =
(
K(x, x1), ...,K(x, xnK )

)T
. (4.21)

Using a kernel trick, the solution of KPCA becomes a linear problem on kx coordi-
nates. The embedded vector is obtained as x̃ = BT kx, where B is the KPCA projection
matrix. For the details, refer to Appendix B. We can use x̃ as the new input for PLS,
MLR, CCA, and CCD.

In our implementation, we use the exponentiated distance function. This is called
the generalized RBF (GRBF) kernel, which has been reported to achieve good perfor-
mance in many tasks [188; 219].

K(xi, x j) = exp
(
− 1

2P
dist(xi, x j)

)
. (4.22)
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Here, dist(xi, x j) is a base distance, such as the χ2 or L2 distance, and P is the mean of
the base distances for the nK training samples [219].

Theoretically, the larger nK becomes, the better the performance is. In a standard
approach, we may use all available training samples for a kernel trick (nK = N). How-
ever, computing the kernel base of a query requires nK raw training samples in memory.
If nK is large, this is computationally as expensive as a brute-force search in a raw fea-
ture space, thus destroying our objective. Moreover, the training phase requires solving
an eigenvalue problem with dimension nK

1, which is intractable when nK is large.
Therefore, we randomly sample a small number of training samples (nK = 300) for

kernelization, and compute the eigenvalue decomposition of KPCA using all N sam-
ples. This approach is based on the idea of large-scale graph spectrum decomposition
methods, such as the Nyström method [203] and column sampling [48].

Related to this topic, large-scale KPCA itself has been an active research area [176],
since it is the most generic framework for manifold learning. For example, further im-
provements in the Nyström method [98; 112] and an efficient algorithm using additive
kernels [151] have been proposed.

4.4 Label Features

Regarding label features, we use a binary vector indicating the presence of each word.
Each element of the vector corresponds to one word. For example, if an image is
annotated with “sky”, “plane”, and “cloud”, the label feature becomes (1, 0, 0, 1, 1)T ,
where the dictionary contains “sky”, “sea”, “mountain”, “plane”, and “cloud”. The
inner product of two label features is thus equal to the number of common words
in the corresponding labels. Intuitively, this makes the Euclidean assumption on the
feature space and application of linear methods reasonable. However, because of the
sparsity of the label feature, the covariance matrix Cyy may become singular, which in
turn may present problems with CCA. In this case, we can add regularization terms to
make the eigenvalue problem stable. For example, Cyy can be replaced by Cyy + γI,
where γ is a small positive number.

4.5 Application to Keyword-based Image Retrieval

Keyword-based image retrieval is a promising application of image annotation. Hav-
ing attached various keywords to unlabeled images through annotation, we can retrieve
them in the same manner as the current text-based web search engines. However, for
practical application, it is desirable to rank appropriate images higher. To do this,

1Generally, the computation complexity is O(n3
K).
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simple keyword matching is not enough. We need to introduce a probabilistic frame-
work to rank images according to their content. Here, we consider two approaches:
maximum likelihood estimation and MAP estimation.

Let wQ denote the query words. First, we describe the maximum likelihood esti-
mation approach. Let gl denote the likelihood of a candidate image Ic, then

gl = P(wQ|Ic) (4.23)

=

N∑
i=1

P(wQ|Ti)P(Ti|Ic). (4.24)

This is also interpreted as the annotation score of wQ for image IC. We rank candidate
images in descending order of gl.

Similarly, we use the posterior probability for ranking in MAP estimation. Let gpp

denote the posterior probability of Ic for a given wQ, then

gpp = p(Ic|wQ) (4.25)

=
P(wQ|Ic)p(Ic)

P(wQ)
(4.26)

=

(∑N
i=1 P(wQ|Ti)P(Ti|Ic)

)
p(Ic)

P(wQ)
(4.27)

∝ gl p(Ic). (4.28)

Note that P(wQ) is constant for a given query wQ.
As shown, gpp is the product of gl and p(Ic). The definition of p(Ic) requires some

prior knowledge and is a difficult problem. Since this problem is beyond the scope
of this research, we assume it to be a constant value. In this case, retrieval based on
gpp corresponds to that based on gl. In the remainder of this thesis, we perform image
retrieval using the maximum likelihood estimation.

4.6 Discussion

4.6.1 Summary of Proposed Methods
The proposed methods (CCAsim, CCD1, and CCD2) all perform non-parametric im-
age annotation using a subspace obtained via CCA. Compared to CCAsim, CCD (CCD1
and CCD2) exploits the PCCA scheme more strictly to obtain a better similarity mea-
sure. In CCAsim, projection of the input vector onto a subspace is done by a simple
linear transformation. Then we use the Euclidean distance as the similarity measure
in an ad-hoc manner. On the contrary, CCD performs projection in a probabilistic
framework, and obtains a more discriminative similarity measure. For example, CCD
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Figure 4.3: (a): Typical topic model approach. (b), (c): Approaches to the annotation
problem using PCCA.

automatically weights each dimension of the latent variable according to its effective-
ness, while CCAsim treats them the same.

Moreover, whereas CCAsim and CCD1 do not consider the contribution of labels
in each sample during the distance computation, CCD2 explicitly utilizes both image
and label features, resulting in a more powerful metric.

4.6.2 Relation to Other Methods Based on Topic Models
As is apparent from Figure 4.1, CCA (PCCA) has the same probabilistic structure as a
topic model. In fact, PCCA can be interpreted as a special case of pLSA whose prob-
ability functions are defined by Gaussians. Generally, pLSA and LDA are formulized
using multinomial distributions so that they can appropriately handle multiple words
that provide symbolic information. Therefore, their topic model can be used directly
for classification (Figure 4.3(a)). However, they need a sequential estimation, such as
the EM algorithm or variational Bayes algorithm, for training, which is influenced by
the initial parameters and often yields a local minimum. Moreover, since the training
cost increases dramatically as the numbers of samples and words increase, it is barely
tractable for the large web-scale datasets, which are the focus of this research. Mean-
while, because PCCA is based on a simple Gaussian model, we can obtain the global
optimal solution in a short time. However, its topic model cannot be used directly as a
classifier, because symbolic word information is not applicable to Gaussians.

In our method, as shown in Figure 4.3(b), we quantify label information to obtain
the label feature beforehand, and then construct a topic model of PCCA using both im-
age and label features. We roughly select essential features (dimensionality reduction)
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in this stage. Next, we reuse the original word information in a sample-based approach,
where each training sample is interpreted as a “topic.” In this approach, each sample
serves as a weak classifier. We model a Bayes optimal classifier by combining the
weak classifiers according to their confidence values. Thus, our approach consists of
two stages. First, semantic dimensionality reduction is performed using an intermedi-
ate representation (i.e. label features y). Then, we build a non-parametric classifier in
the latent space using w.

As a straightforward approach to conducting annotation via CCA, it is possible
to use the estimated label features output by the topic model directly (Figure 4.3(c)).
Specifically, we can exploit ŷ = argmax

∫
p(y|z)p(z|x)dz to design heuristic anno-

tation rules. However, since CCA is a linear error minimization method, the above
mentioned approach is basically equivalent to a simple linear regression. Although
some previous works exploit linear CCA regression for the image annotation prob-
lem [74; 224], it is difficult for linear methods to explain adequately the complex rela-
tion between image and words in the generic problems targeted by image annotation.
In many cases, kernelized methods are used to deal with non-linearity [74; 209]. How-
ever, naive kernelization can only embed the original generative distance metrics of
features. Therefore, it is still difficult to model the correspondence of distributions.

On the contrary, our proposed method follows a practical approach. We can ef-
ficiently exploit the informative structure remaining in the latent space by a sample-
based approach theoretically guaranteed by PCCA.
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Chapter 5

Evaluation of Image Annotation
Method

5.1 Datasets

We performed extensive experiments using four datasets. The Corel5K dataset [50]
has been used as a benchmark for image annotation for a long time. In recent years,
the IAPR-TC12 and ESP Game datasets have also frequently been used for evalua-
tion [71; 125]. In addition to these, we also used the NUS-WIDE dataset [37], which
is a relatively large-scale benchmark. Table 5.1 summarizes the statistics for each
dataset.

Corel5K

The Corel5K dataset [50] has long been the de facto standard dataset for the problem
of image annotation. This dataset contains 5000 pairs of an image and its labels. Each
image has been manually annotated with an average of 3.4 keywords. 4500 samples
are specified as the training data, while the remaining 500 samples are the test data.
The dictionary contains 260 words.

IAPR-TC12

IAPR-TC12 was originally developed for the task of cross-lingual image retrieval.
Makadia et al. [125] extracted common nouns from it and set up the current version
for image annotation. Each sample is annotated with an average of 5.7 words from the
291 candidate words.
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5.2. Basic Experiment

Table 5.1: Statistics of the training sets of the benchmarks.
Corel5K IAPR-TC12 ESP Game NUS-WIDE

dictionary size 260 291 268 81
# of images 4,500 17,665 18,689 161,789
# of words per image (avg/max) 3.4/5 5.7/23 4.7/15 1.9/12
# of images per word (avg/max) 58.6/1004 347.7/4999 362.7/4553 3721.7/44255

ESP Game

The ESP Game dataset is a subset of an image-label database obtained from an online
image labeling game [189]. It consists of 18,689 training samples and 2,081 test sam-
ples. This dataset includes not only real images, but also pictures and logos. We follow
the same setup as in [71; 125].

NUS-WIDE

The NUS-WIDE dataset [37] is a comparatively large web image dataset, consisting
of 161,789 training samples and 107,859 test samples downloaded from Flickr. All
samples are supervised and labeled with 81 concepts. Note that many images in the
dataset are “negative” and have no labels; that is, none of the 81 concepts appear within
the images. We randomly sampled 2,000 “positive” images from the test samples and
used these as our test data.

5.2 Basic Experiment
In this section, we discuss the effectiveness of CCD using the Corel5K, IAPR-TC12,
and NUS-WIDE datasets. We compare CCD with other dimensionality reduction
methods, and confirm its superiority in non-parametric image annotation. In addi-
tion, using various image features, we test both linear dimensionality reduction and
that with KPCA embedding, to investigate whether these methods are effective.

5.2.1 Image Features
For the Corel5K and IAPR-TC12 datasets, we tested the following five image features.

1) Densely-sampled SIFT [120] bag-of-visual-words (BoVW) (1000 dim)

2) Densely-sampled Hue [185] BoVW (100 dim)

3) GIST [144] (512 dim)
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4) HSV color histogram (4096 dim)

5) Higher-order local auto-correlation (HLAC) features (2956 dim)

Except for the HLAC features, all the features are employed in TagProp [71], and
are available on the authors’ web page1. For details of the HLAC features, refer to
Appendix C.

For the NUS-WIDE dataset, we tested the following four image features.

1) Edge histogram (73 dim)

2) Color correlogram (144 dim)

3) Grid color moment (225 dim)

4) SIFT BoVW (500 dim)

These features are also provided by the authors of [37]2. To provide baselines, we
computed various base distances for each feature (e.g. χ2 distance, L1 and L2 distances,
histogram intersection).

5.2.2 Experimental Setup
Since our interest is in the performance of distance metrics for non-parametric image
annotation, we simply use the k-nearest neighbor method with a brute-force search.
The system outputs the most frequent labels in the k retrieved neighbors. We prioritize
a rare label in the training dataset if the numbers of relevant neighbors are equal. With
the Corel5K and IAPR-TC12 datasets, we tested k = 1, 2, 4, 8, 16, 32 and took the best
performance. Similarly, we tested k = 50, 100, 150, 200 using the NUS-WIDE dataset.

As distance metrics, we evaluate both CCD1 (Equation 4.14) and CCD2 (Equa-
tion 4.17). Unlike CCD1, CCD2 explicitly considers the contribution of labels in the
distance computation. To compare dimensionality reduction methods, we evaluated
the following. In all these methods, the sample distance is computed in terms of Eu-
clidean distance in the compressed subspace.

• PCA

• PCAW

• PLS

• nPLS
1http://lear.inrialpes.fr/data
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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5.2. Basic Experiment

• MLR

• nMLR

• CCA

Here, PCAW represents PCA with whitening, where the variance of the principal com-
ponents is normalized. For the details of PLS (nPLS) and MLR (nMLR), refer to
Section 3.2.2.

To evaluate annotation, we followed the methodology of a previous work [50]. The
system annotates each test image with five words and computes the average of word-
specific recall and precision. We finally used their F-measure as the annotation score.
For more details, refer to Appendix A.

5.2.3 Experimental Results

We first report the results for the Corel5K and IAPR-TC12 datasets. In these small
datasets, the dimension of image features is too large for MLR and CCA, both of
which require the inverse of the covariance. Therefore, with the exception of Hue
BoVW, we initially compressed visual features into 200-dimensional vectors using
PCA, before computing MLR and CCA, CCD1, and CCD2. To embed non-linear
metrics, we exploited the first 200 principal components of KPCA, and used these as
the new image features. We placed the χ2 distance into a kernel for SIFT BoVW and
Hue BoVW (see Section 4.3). As for GIST, the L2 distance is empirically used as the
base distance in many works. However, we placed the L1 distance in a kernel as it
showed better performance in our experiment. Regarding HLAC, we did not perform
kernelization since all possible base distances worked poorly.

Figures 5.1∼5.10 show a comparison of annotation accuracy (F-measure). It is
shown that bimodal dimensionality reduction methods such as PLS, MLR, and CCA
improve the annotation score substantially compared with PCA. In many cases, nPLS
and CCD exhibit superior performance, and achieve comparable or better performance
than with the original L2 distance, using the first 10 or 20 dimensions only. If the
Euclidean assumption of the feature space holds, we can expect both efficient com-
pression and improvement of annotation accuracy. However, many practical image
features are not embedded in a Euclidean space. In such cases, it is difficult for simple
linear methods to compete with the original domain-specific metric, in terms of accu-
racy. This is especially true for the Hue BoVW and color histogram. In these cases,
KPCA embedding works effectively and substantially improves the performance, al-
though only a small fraction of training samples are used for kernelization (nK=300).
On the contrary, as has been proved in previous works, it is reasonable to assume a Eu-
clidean space for GIST features. Thus, as illustrated in Figures 5.7 and 5.8, embedding
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L1 distance does not substantially improve performance compared with normal linear
methods.

Below, we summarize other knowledge and considerations.

• In linear methods, performance tends to be ordered CCD > nPLS > others.
Sometimes nPLS outperforms CCD (for example, Figure 5.6), probably because
PLS is a numerically stable method and works relatively well when ignoring the
structure of the original non-linear manifold. In contrast, CCD always performs
better when KPCA is applied. This result indicates that CCD is generally the
best method in this framework when the Euclidean assumption holds.

• The performance of the CCA family is often ordered CCD2 >CCD1 >CCA. Be-
cause CCA assigns equal weights to all canonical features, performance some-
times declines rapidly as d becomes larger (for example, Figure 5.7). In contrast,
CCD maintains good performance since it automatically weights latent features
according to canonical correlations. Moreover, CCD2 generally outperforms
CCD1, indicating the importance of considering the y-view at an instance level
for distance computation.

• HLAC features show excellent performance compared to the other features. It
should be noted that HLAC seems to be compatible with linear methods. It ob-
tains high scores comparable with those of other features using KPCA embed-
ding. Generally, HLAC works well with PCAW, MLR, and CCA (CCD). These
methods all perform whitening of original features. However, when the original
L2/L1 distance or variance preserving methods such as PCA and PLS are ap-
plied, performance is extremely low. This is due to the nature of HLAC where
variances in the feature elements vary greatly. Although HLAC is a powerful
feature, it should be used with care bearing this property in mind.

Next, we summarize the results for the NUS-WIDE dataset as illustrated in Fig-
ures 5.11∼5.14. Since the provided features are normalized, we only investigate L1
and L2 as baseline distances, except for BoVW. Overall, the results are similar to those
obtained with the Corel5K and IAPR-TC12 datasets. In particular, CCD shows a sub-
stantial improvement over the original distances in many cases, using only a dozen or
so dimensions. However, unlike in the previous experiment, CCD1 and CCD2 perform
almost equally. Although NUS-WIDE is a relatively large dataset, the label feature in
this experiment consists of only 81 basic concepts. Our hypothesis is that, while this
label feature is effective in the dimensionality reduction phase, it is too weak to con-
tribute to the actual distance computation in the latent space.

Finally, we report actual computation times using the NUS-WIDE dataset. The
training times for each method are summarized in Table 5.2. Target dimensionality was
set at d = 20, and we used an 8-core Xeon 3.20 GHz processor for computation. PLS,
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5.2. Basic Experiment

Table 5.2: Computation times for training the system on the NUS-WIDE dataset using
each method[s]. We found that the differences in running times between PCA and
PCAW, and between CCA and CCD are negligible for a small d.

NUS-WIDE (161,789 samples, 81 words)
EDH (73 dim) Cor. (144 dim) C. mom. (225 dim) BoVW (500 dim)

PCA (PCAW) 1.2 2.0 3.4 8.0
PLS 1.9 2.6 3.6 6.7
nPLS 3.5 5.2 7.4 14.6
MLR 2.0 2.7 4.0 8.3
nMLR 2.7 3.4 4.8 9.0
CCA (CCD) 2.1 3.0 4.5 10.1

MLR, and CCD can be computed with moderate additional time from PCA, although
their annotation performance is improved. This is especially true when the dimension
of the visual feature is much larger than the size of the vocabulary (p � q), which is
explained in the analysis in Section 3.2.2. For example, PLS works faster than PCA in
a 500-dimensional BoVW.
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Figure 5.1: Results for the Corel5K dataset (1000-dimensional SIFT BoVW). Methods
are compared using different features with designated dimensionality (d). For each
entry, the left set of bars corresponds to normal linear methods, while the right set
corresponds to those with KPCA embedding.
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Figure 5.2: Results for the IAPR-TC12 dataset (1000-dimensional SIFT BoVW).
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Figure 5.3: Results for the Corel5K dataset (100-dimensional hue BoVW).
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Figure 5.4: Results for the IAPR-TC12 dataset (100-dimensional hue BoVW).
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Figure 5.5: Results for the Corel5K dataset (4096-dimensional HSV color histogram).
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Figure 5.6: Results for the IAPR-TC12 dataset (4096-dimensional HSV color his-
togram).

61



5.2. Basic Experiment

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 20 50 100 ( )d

GIST (Corel5K)F-measure

KPCA 
embeddingLinear

PCA 

PCAW 

PLS

nPLS 

MLR

nMLR

CCA 

CCD1

CCD2

L2 

L1 

Figure 5.7: Results for the Corel5K dataset (512-dimensional GIST).

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 20 50 100 ( )d

GIST (IAPR-TC12)F-measure

KPCA 
embeddingLinear

PCA 

PCAW 

PLS

nPLS 

MLR

nMLR

CCA 

CCD1

CCD2

L2 

L1 

Figure 5.8: Results for the IAPR-TC12 dataset (512-dimensinal GIST).
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Figure 5.9: Results for the Corel5K dataset (2956-dimensional HLAC). Only linear
methods are compared.
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Figure 5.10: Results for the IAPR-TC12 dataset (2956-dimensional HLAC).
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Figure 5.11: Results for the NUS-WIDE dataset (edge histogram). Methods are com-
pared using different features with designated dimensionality (d).
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Figure 5.12: Results for the NUS-WIDE dataset (color correlogram).
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Figure 5.13: Results for the NUS-WIDE dataset (grid color moment).
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Figure 5.14: Results for the NUS-WIDE dataset (SIFT BoVW).
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5.3 Comparison with Previous Research

Next, we compare our CCD-based image annotation method with previous research
using the Corel5K, IAPR-TC12, and ESP game datasets. We implement our method
with MAP classification because it can formulate the retrieval problem in a probabilis-
tic manner.

5.3.1 Image Features

We investigate the following three cases.

(a) Only the HLAC feature is applied to the proposed method in a linear framework.

(b) Fifteen features from TagProp are concatenated with equal weights using kernels
and embedded via KPCA.

(c) Fifteen features from TagProp are concatenated with different weights using ker-
nels and embedded via KPCA.

The HLAC feature used in case (a) is the same as that used in the previous experi-
ment (refer to Appendix C). Here, we explain cases (b) and (c). TagProp [71] uses the
following image features.

1) SIFT bag-of-visual-words (dense sampling)

2) SIFT bag-of-visual-words (Harris detector)

3) Hue bag-of-visual-words (dense sampling)

4) Hue bag-of-visual-words (Harris detector)

5) RGB color histogram

6) HSV color histogram

7) LAB color histogram

8) GIST feature

Items 1, 3, 6, and 8 are the same as those used in the previous experiment. Further, for
all features except item 8, TagProp also uses spatially partitioned versions. Therefore,
it exploits 15 image features in total. In our method, we use the L1 distance for GIST
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and the χ2 distance for the other features to build GRBF kernels. Finally, these kernels
are linearly combined for use in KPCA embedding.

Kall =

NF∑
i=1

αiKi, (5.1)

where NF is the number of features (here, NF = 15), Ki indicates the kernel of the i-th
feature, and αi is its weight. Optimization of αi is an important topic studied in the
field of multiple kernel learning (MKL) [103]. In case (b), we give all kernels equal
weights.

Kaverage
all =

1
NF

NF∑
i=1

Ki. (5.2)

In case (c), we optimize the weights in the MKL framework. Although MKL has
been applied to KCCA [209], its computational cost is immense since it needs to solve
an eigenvalue problem at each iteration. Therefore, we perform MKL through the
task of label feature regression using support vector regression (SVR) [49]. Although
the weights optimized by SVR are not directly related to annotation, we can roughly
select important kernels. For an implementation of MKL SVR, we use the Shogun
Library [172].

In the following sections, “Proposed (HLAC)” denotes case (a), “Proposed (15F:
average+KPCA)” case (b), and “Proposed (15F: SVRMKL+KPCA)” case (c).

5.3.2 Experimental Results
Tables 5.3, 5.4, and 5.5 show the results for the Corel5K, IAPR-TC12, and ESP game
datasets, respectively. For the definition of each score, refer to Appendix A. We use
nK = 300 base samples for kernelization. First, it is shown that Proposed (HLAC)
achieves comparable performance with the state-of-the-art methods, except for Tag-
Prop. While these methods improve performance by using multiple features, our
method obtains promising scores using only HLAC features. Moreover, our method
further improves the annotation and retrieval performance when multiple features are
utilized via KPCA.

Next, we show the relation between the number of base vectors nK and performance
in Figure 5.15. As illustrated, the more samples we use for kernelization, the better
is the obtained score. Also, SVRMKL+KPCA (with optimized weights) generally
outperforms average+KPCA (with equal weights). This is more evident when nK is
small. However, average+KPCA sometimes shows better performance when nK is
large. We observe that the key to improving the recognition accuracy is to use more
base vectors. If we wanted to emphasize the computational cost for recognition, MKL
with a small number of base vectors would be a good solution.
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5.3. Comparison with Previous Research

Table 5.3: Performance comparison using Corel5K.

MR MP F-m N+ MAP MAP (R+)
Co-occurrence [133] 0.02 0.03 0.02 19 - -
Translation [50] 0.04 0.06 0.05 49 - -
CMRM [88] 0.09 0.10 0.09 66 0.17 -
Maximum Entropy [89] 0.12 0.09 0.11 - - -
CRM [105] 0.19 0.16 0.17 107 0.24 -
NPDE [213] 0.18 0.21 0.19 114 - -
InfNet [127] 0.24 0.17 0.20 112 0.26 -
CRM-Rectangles [59] 0.23 0.22 0.23 119 0.26 0.30
Independent SVMs [119] 0.22 0.25 0.23 - - -
MBRM [59] 0.25 0.24 0.25 122 0.30 0.35
AGAnn [117] 0.27 0.24 0.25 126 - -
SML [29] 0.29 0.23 0.26 137 0.31 0.49
DCMRM [118] 0.28 0.23 0.26 135 - -
TGLM [116] 0.29 0.25 0.27 131 - -
MSC [191] 0.32 0.25 0.28 136 0.42 0.79
Matrix Factorization [119] 0.29 0.29 0.29 - - -
JEC [125] 0.32 0.27 0.29 139 0.33 0.52
JEC (15F) [71] 0.33 0.29 0.30 140 - -
CBKP [122] 0.33 0.29 0.31 142 - -
GS [220] 0.33 0.30 0.31 146 - -
TagProp [71] 0.42 0.33 0.37 160 0.42 -
CCD (HLAC) 0.36 0.32 0.34 149 0.42 0.63
CCD (15F: average+KPCA, nK = 300) 0.38 0.34 0.36 151 0.42 0.64
CCD (15F: SVRMKL+KPCA, nK = 300) 0.41 0.36 0.38 159 0.43 0.65
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Table 5.4: Performance comparison using IAPR-TC12.

MR MP F-m N+ MAP MAP (R+)
MBRM [125] 0.23 0.24 0.23 223 0.24 0.30
JEC [125] 0.29 0.28 0.30 250 0.27 0.31
JEC (15F) [71] 0.19 0.29 0.23 211 - -
TagProp [71] 0.35 0.46 0.40 266 0.40 -
GS [220] 0.29 0.32 0.30 252 - -
CCD (HLAC) 0.26 0.35 0.30 249 0.32 0.38
CCD (15F: average+KPCA, nK = 300) 0.28 0.43 0.34 251 0.37 0.43
CCD (15F: SVRMKL+KPCA, nK = 300) 0.29 0.44 0.35 251 0.39 0.44

Table 5.5: Performance comparison using ESP game dataset.

MR MP F-m N MAP MAP (R+)
MBRM [125] 0.19 0.18 0.18 209 0.18 0.24
JEC [125] 0.25 0.22 0.23 224 0.21 0.25
JEC (15F) [71] 0.19 0.24 0.21 222 - -
TagProp [71] 0.27 0.39 0.32 239 0.28 -
CCD (HLAC) 0.18 0.27 0.22 221 0.19 0.22
CCD (15F: average+KPCA, nK = 300) 0.24 0.33 0.28 236 0.26 0.30
CCD (15F: SVRMKL+KPCA, nK = 300) 0.24 0.36 0.29 232 0.27 0.31
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Figure 5.15: Annotation performance (F-measure) with a varying number of base sam-
ples for kernel PCA embedding.
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5.3. Comparison with Previous Research

Table 5.6: Comparison of annotation performance (F-measure) using TagProp.
Corel5K IAPR-TC12 ESP Game

TagProp ML 0.337 0.329 0.284
TagProp σML 0.369 0.399 0.323
CCD (HLAC) 0.341 0.297 0.217
CCD (15F: average+KPCA, nK = 300) 0.355 0.342 0.277
CCD (15F: SVRMKL+KPCA, nK = 300) 0.383 0.353 0.286
CCD (15F: SVRMKL+KPCA) 0.394 0.391 0.296

Finally, we give a detailed comparison of our method and TagProp [71]. Tag-
Prop owes its high recognition accuracy not only to the metric learning using multiple
features, but also to the logistic discriminant model that relaxes the bias of training
samples. As in [71], we let “TagProp ML” denote the case in which only metric learn-
ing is applied, while “TagProp σML” denotes the case in which the logistic discrimi-
nant model is added. We present the scores (F-measures) in Table 5.6. The proposed
method, even with a small number of base vectors (nK = 300), outperforms σML with
Corel5K and TagProp ML with the other datasets. It is expected that we can further
improve our method by incorporating a logistic discriminant model as in TagProp,
although this is not within the current scope of this research.

5.3.3 Computational Costs

Table 5.7 summarizes the computational costs of our method and previous works, in
terms of training and recognition. Considering that our research is aimed at large-scale
applications, scalability of the number of training samples N is especially important.
Here, we compare our method with JEC, GS, and TagProp, which are state-of-the-art
methods.

Since these previous works all follow a sample based approach, their computational
complexities for recognition are linear in the number of training samples. However,
their actual computational costs differ because of the dimensionality of an instance.
JEC and TagProp compute distances between the query and training samples in the
image feature space, the cost of which is O(pN), whereas the proposed method does
this in the latent space of PCCA, the cost of which is O(dN). Since d � p in general,
our method is faster than the other methods 1. For example, TagProp uses 15 features,

1However, the cost is still prohibitive in large-scale problems, because we need to search all training
samples in memory to perform non-parametric image annotation. Therefore, the sample representation
should be as small as possible, while maintaining annotation accuracy. In Appendix E, we investigate
this issue and develop an effective method using the technique of approximate nearest neighbor search.
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Table 5.7: Comparison of computational costs against the number of samples. N is the
number of whole training samples, while nK is the number of those used for kerneliza-
tion.

Training Annotation
JEC [125] - O(pN)
GS [220] O(N2) O(dGS N)
TagProp [71] O(N) ∼ O(N2) O(pN)
Proposed (linear) O(N) O(dN)
Proposed (KPCA embedding) O(N + n3

K) O(dN + pnK)

resulting in more than 37,000 dimensions. In contrast, the dimension of the latent
space of our method is only 50∼100 in the current setup. However, when performing
KPCA embedding, we need to compute distances in the image feature space to cal-
culate kernel bases. Therefore, as nK increases, the recognition speed of our method
decreases substantially. Similarly, GS evaluates distances using dGS features selected
via group sparsity learning.

Next, we discuss the costs of training. JEC does not need a training phase because
it is a simple k-NN based method. GS and TagProp need to compute all pairwise
distances of training samples to optimize the weights of multiple features. Basically the
computational complexity becomes O(N2), although in [71] a quasi-linear approximate
method is implemented. CCA, which is the core of our method, consists of two steps,
namely, computing covariance matrices, and solving the eigenvalue problem. For a
fixed setup, the complexity is linear in the number of samples. Contrarily, solving
KPCA requires O(n3

K) cost, which is intractable when nK is large.

5.4 Discussion
We have confirmed that our method can achieve performance comparable with that of
previous works using the standard benchmarks. Moreover, the computational cost of
our method is substantially reduced for both training and recognition. This is because
our method is primarily based on a linear learning method.

However, we also observed that annotation accuracy drops dramatically when our
method is applied to certain image features that have non-linear distance metrics. One
solution is to embed image features in a new Euclidean space using kernel methods.
However, to realize good performance, we need to use many samples as bases for
kernelization. The computational cost thereof increases significantly compared to the
standard linear implementation, destroying the advantage of our method. This is a
serious problem, since many practically used image features have non-linear metrics.
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5.4. Discussion

On the contrary, it is empirically shown that HLAC features are compatible with
linear methods. In other words, merely applying HLAC features to the CCD frame-
work, we can obtain performance comparable with that of other image features with
kernelization. This is probably due to the nature of HLAC features having Euclidean
properties to some extent.

Thus, it is extremely important to consider compatibility between learning methods
and image features in developing image recognition systems. The investigation in this
chapter suggests that we can realize scalable and accurate annotation methods using
image features compatible with linear learning methods (e.g. HLAC features). In the
next chapter, we develop a theoretical and generic framework to extract image features
that satisfies the above mentioned condition.
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Chapter 6

Development of Image Feature
Extraction Scheme

In this chapter, we develop a new scheme for image feature extraction [139; 141]. The
objective is to extract features compatible with linear methods such as CCD. More
specifically, we can obtain high recognition accuracy merely by applying these features
directly to linear methods.

6.1 Coding Global Image Features Using Local Feature
Distributions

Image feature extraction can be roughly divided into the following two processes.

1. Extracting a number of local features.

2. Coding the extracted local features into a single global feature vector.

Both are important processes closely related to the performance of the final feature
vector. Notably, recent works have shown that innovations in process 2 (coding) can
substantially improve recognition performance [152; 195; 211; 222]. Moreover, cod-
ing methods generally determine the compatibility between features and classifiers.
Therefore, we focus on the coding problem in this chapter. The key question for cod-
ing is how to efficiently exploit the statistical properties of the distribution of local
features.

As discussed in detail in the following sections, the standard bag-of-visual-words
(BoVW) can be interpreted as a sparse sampling of high-level statistics. In contrast,
we propose the opposite approach: dense sampling of low-level statistics. We simply
model a local feature distribution of each image as a Gaussian and introduce appro-
priate coding methods and distance metrics. Using the information geometry tech-
nique [4], we can derive a scalable and powerful linear approximation.
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6.2. Related Work

Table 6.1: Summary of previous work and our work from the viewpoint of local feature
statistics.

High-level Low-level
Dense Non-parametric [21] Covariance [183; 184]

Gaussian mixture model [132; 221] This work (single Gaussian)
Sparse Bag-of-visual-words [40; 211]

Despite its simplicity, our approach achieves satisfactory performance with several
datasets. Furthermore, because our method and BoVW illustrate different statistical
aspects, we can further improve classification performance by using both of these.

6.2 Related Work

In this section, we discuss previous research from the viewpoint of use of local fea-
ture distributions. Generally, local features employed in image recognition are high-
dimensional. For example, the most well-known SIFT descriptor [120] has 128 dimen-
sions. However, the number of statistically independent samples that can be extracted
from one image is severely restricted. Therefore, estimating the distribution is an ex-
tremely difficult task. With this in mind, Table 6.1 summarizes the approaches of both
previous work and this research. We classify each method by the complexity of models
and coding sparsity.

6.2.1 Non-parametric Method

A straightforward approach is to use raw local features in a non-parametric manner
without an explicit coding process. Boiman et al. [21] proposed the Naive-Bayes
Nearest Neighbor (NBNN) classification algorithm, which finds the closest patch in
the training corpus for all patches in the query image. This method showed excel-
lent performance in 2008, probably because a non-parametric approach can handle the
complex structure of real data in a relatively stable manner using a limited number of
examples. However, the computational cost of this method is immense because all the
raw local features in the training images must be preserved for use in classification.
Therefore, although this method is scientifically significant, it is impractical for real
problems.
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6.2.2 Gaussian Mixtures

As an example of parametric estimation, Vasconcelos et al. exploited a Gaussian mix-
ture model (GMM) to model the distribution [132; 187]. To apply their generative
model to discrimination, they proposed a kernel function to define the similarity be-
tween two distributions, and used it on a support vector machine (SVM). These meth-
ods are interpreted as dense sampling of the high-level statistics of local feature dis-
tributions. Ideally, this gives an optimal representation of a distribution. However, as
mentioned above, it is nearly impossible to estimate a large-scale GMM using local
features sampled from each individual image. Therefore, in practice, the GMM is usu-
ally constructed using the entire training corpus and a distribution of each image is
estimated as a deviation from it [149; 221; 223]. Zhou et al. [221] estimated a GMM
for each image in this approach and used its parameters as appearance features. In ad-
dition, Perronnin et al. [149] represented each image using the Fisher score vector of
a GMM of the dataset. While this approach shows superior performance, image repre-
sentation depends heavily on the generative model of the training corpus. To deal with
other tasks, we need to rebuild the GMM, which is computationally quite expensive.

6.2.3 Bag-of-Visual-Words

Bag-of-visual-words (BoVW) [40] is an application for image recognition of bag-of-
words [126], which is a textual feature. It is the current de-facto standard approach
in generic image recognition. The first step in this method is to perform a vector
quantization of the local features of the training images using clustering algorithms
to obtain centroids that represent the visual words. Usually, the k-means algorithm
is used for clustering because of its computational efficiency. The resulting feature is
a histogram of visual word occurrences in the image. This method is interpreted as
exploiting only the mixing ratio of each Gaussian of the GMM. In this sense, it can be
said that BoVW is a sparse sampling of high-level statistics.

Since BoVW can achieve promising recognition accuracy with relatively low com-
putational costs, it has attracted much attention in the community. Despite its success,
there are some major problems to be solved. The first of these is the codebook gen-
eration process, because the standard k-means algorithm tends to place its clusters
around the densest regions in the training corpus. Many works have focused on this
problem. For example, Jurie et al. [91] exploited a radius-based mean-shift clustering
to generate a more appropriate codebook. Wu et al. [205] showed that a histogram
intersection is generally a better metric for clustering local features. There are also
many studies focused on improving BoVW related to other aspects. For example, the
soft assignment strategy [150; 186], which assigns each local feature to several visual
words, has been shown to create more descriptive visual word histograms. Recently,
as a new breakthrough, it has been revealed that soft assignment using sparse coding
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6.3. Proposed Method: Global Gaussian Approach

can achieve surprisingly high recognition accuracy [195; 211].
Of course, there are also many methods based on vector quantization other than

those for clustering. For instance, Tuytelaars et al. [182] presented a lattice-based
vector quantization instead of a data-driven approach. Shotton et al. [167] proposed a
fast coding method using a random decision forest.

6.2.4 Covariance Descriptor
As an example of a method based on low-level statistics, Tuzel et al. proposed the
covariance descriptor [183; 184], which is probably the closest to our method. They
extracted a covariance matrix of the local features of an image, and described it as a
point on a Riemannian manifold. Further, they performed LogitBoost learning using
a tangent space of the manifold by means of differential geometry. They achieved
excellent performance for a human detection task. This method can be interpreted as
using the shape of a Gaussian to describe an image. Covariances are typical examples
of low-level statistics and are expected to be relatively stable. However, since they
are sampled from each image independently, an obvious problem is that they lose
mean information. That is, two Gaussians at different points with similar shapes are
indistinguishable. Moreover, because our method is based on a “flat” manifold, we can
effectively exploit the structure of tangent spaces.

6.3 Proposed Method: Global Gaussian Approach
In our method, an image is represented as a Gaussian distribution of its local features.
We call this the global Gaussian approach [141]1.

6.3.1 Coding Gaussian with Information Geometry
Suppose a bag of D-dimensional local features {vk} are extracted from an image I j.
Then, I j can be explained by the distribution p j(v; θ( j)) with θ( j) as the parameters.
We plot each sample on a flat Riemannian manifold using the information geometry
technique. We derive some theoretically supported similarity metrics on the manifold
and use these as kernel functions so that they are applicable to discrimination. As
a natural result, it is shown that a theoretically optimal kernel is the one based on
the Kullback-Leibler (KL) divergence. Basically, this kernel is the same as that used
in [132], and is expected to provide the upper limit performance of our global Gaussian
approach. However, the scalability of a KL divergence based method is low because
it requires high-cost nonlinear computation. Therefore, we also derive a linear coding

1Here, “global” means that we fit a Gaussian over the entire local feature space. This is in contrast
to the GMM and BoVW, which estimate local structures in the space.
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that approximates the KL-divergence. This technique gives us an image feature vector
compatible with linear methods, which is the final objective in this chapter.

6.3.2 Brief Summary of Information Geometry
Information geometry, which is based on differential geometry, began as the geometric
study of statistical estimation [4]. It expresses the model space of a certain family
of parametric probability functions as a Riemannian manifold. Each sample, which
constitutes a probabilistic distribution, is represented as a point on the manifold. Let us
consider the manifold S formed from a probabilistic model p(v; θ) with n-dimensional
parameters θ = (θ1, ..., θn). An information geometry framework gives a statistically
natural structure to the manifold. First, we exploit a Fisher information matrix as the
Riemannian metric.

Gθ
lm(θ) = Eθ

[
∂ log p(v; θ)

∂θl

∂ log p(v; θ)
∂θm

]
. (6.1)

The vicinity of each point on the manifold can be regarded as a Euclidean space. This
is called a tangent space, where the inner product is defined by the Riemannian met-
ric. Next, we apply a symmetric connection called an α-connection1, with α as the
parameter determining the structure of the manifold. For some specific probabilistic
models, we find a flat manifold by taking an appropriate affine coordinate system ξ,
in which tangent spaces are flatly connected. If such a coordinate ξ exists, the model
space is defined as α-flat, and ξ is defined as the α-affine coordinate system. In an α-
flat space, a geodesic is represented as a line on the α-coordinate system (α-geodesic).
It is known that an α-flat space is always −α-flat and that we can take another affine
coordinate system that is dual to ξ. As discussed in more detail below, α = ±1 becomes
especially important in information geometry2. Actually, it is known that there exist
±1-coordinate systems for many practical probabilistic models that are widely used
in statistical learning. Therefore, information geometry has been successfully applied
to the analysis and interpretation of many kinds of learning methods, such as the EM
algorithm [3], boosting [137], and variational Bayes [84]. For further details, refer
to [4].

The exponential family is among the most basic and important probabilistic models
for practical applications. It also plays an important role in the information geometry
framework. A distribution of the exponential family is represented as:

p(v; θ) = exp

 n∑
i=1

θiFi(v) − ψ(θ) +C(v)

. (6.2)

1α = 0 corresponds to the Levi-Civita connection.
2In information geometry, terms such as 1-connection and 1-flat are specifically called e-connection

and e-flat (e:exponential), respectively, while -1-connection and -1-flat are called m-connection and m-
flat (m:mixture), respectively. However, we do not change the terminology in this paper for simplicity.
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6.3. Proposed Method: Global Gaussian Approach

Here, θ is the model parameter, F is a function of the observed variable v, ψ(θ) is the
potential function, and C(v) is a constant function independent of θ. The exponential
family is 1-flat, taking θ as the corresponding affine coordinate system. We can take
another affine coordinate system η = (η1, ..., ηn), which is dual to θ and is defined
as ηi = Eθ[Fi(v)]. The η-coordinate system is interpreted as the space of sufficient
statistics and is −1-flat. The Riemannian metric of the η-coordinate system becomes
the inverse of that of the θ-coordinate system (Gθ, Equation 6.1). This can be explicitly
described using the following conversion.

Gη
lm =

∂θl

∂ηm
. (6.3)

6.3.3 Gaussian Embedding Coordinates: Generalized Local Cor-
relation (GLC)

A Gaussian also belongs to the exponential family and is described by n = d+d(d+1)/2
parameters. Let µ and Σ denote the sample mean and covariance, respectively. Letting

C(v) = 0, Fi(v) = vi, Fi j(v) = viv j (i ≤ j),

θi =

D∑
j=1

(Σ−1)i jµ j, θii = −1
2

(Σ−1)ii, θi j = −(Σ−1)i j (i < j), (6.4)

a Gaussian is represented as follows:

p(v; θ) = exp

∑
1≤i≤D

θiFi(v) +
∑

1≤i≤ j≤D

θi jFi j(v) − ψ(θ)

 . (6.5)

Here,

ψ(θ) =
1
2
µTΣ−1µ +

1
2

log(2π)D|Σ|. (6.6)

The η-coordinates then become:

ηi = µi, ηi j = Σi j + µiµ j (i ≤ j). (6.7)

The θ-coordinates are based on the model parameters, while the η-coordinates are
based on sufficient statistics. In an ideal situation, where perfect information is ob-
tained from the samples, we may take either of these as the image feature space. Usu-
ally, however, we have only a limited number of observations (local features) for each
sample (an image). Therefore, we take the estimated sufficient statistics from the obser-
vations and plot each sample on the η-coordinates. Let ei, ei j denote the basis vectors
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corresponding to ηi and ηi j, respectively. Then the η-coordinate system is described as:

η =
∑

1≤i≤D

ηiei +
∑

1≤i≤ j≤D

ηi jei j

= (η1, ..., ηD, η11, ..., η1D, η22, ...η2D, ..., ηDD)T

=
(
µ̂1, ..., µ̂D, Σ̂11 + µ̂

2
1, ..., Σ̂1D + µ̂1µ̂D,

Σ̂22 + µ̂
2
2, ..., Σ̂DD + µ̂

2
D
)T
. (6.8)

As Equation 6.8 shows, the η-coordinates consist of all the means and correlations of
the elements of observed local features. Therefore, we call the η-coordinate vector
the generalized local correlation (GLC). The Riemannian metric of the η-coordinate
system is expressed as:

Gη
i j = (Σ−1)i j(1 + µTΣ−1µ)+∑D

k=1
µk(Σ−1)ki

∑D

k=1
µk(Σ−1)k j,

Gη
i(pq) = − (Σ−1)pi

∑D

k=1
µk(Σ−1)kq −

(Σ−1)qi

∑D

k=1
µk(Σ−1)kp (p < q),

Gη
i(pp) = − (Σ−1)pi

∑D

k=1
µk(Σ−1)kp

Gη
(pq)(rs) = (Σ−1)ps(Σ−1)qr + (Σ−1)qs(Σ−1)pr

(p < q, r < s),

Gη
(pq)(rr) = (Σ−1)pr(Σ−1)rq (p < q),

Gη
(pp)(rr) =

1
2

(Σ−1)2
pr. (6.9)

In the above, the suffixes correspond to Equation 6.8. For example, Gη
i(pq) = 〈ei, epq〉

and Gη
(pq)(rr) = 〈epq, err〉.

6.3.4 Kernel Functions
KL divergence based kernel

Let P and Q denote the points on the manifold corresponding to distributions f (v) and
g(v), respectively. In information geometry, the α-divergence between two points P
and Q in a dually-flat space is defined as follows:

D(α)(P||Q) = ψ
(
θ(P)

)
+ ϕ

(
η(Q)

) − n∑
i=1

θi(P)ηi(Q). (6.10)
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Here, ϕ(η) is the potential function of the η-coordinate system. The α-divergence is an
important metric for information geometry. Intuitively, it represents the dissimilarity
between two points; strictly speaking, it is different from a mathematical distance,
because a symmetric property does not hold unless P and Q are sufficiently close.
Moreover, the dual −α-divergence becomes D(−α)(P||Q) = D(α)(Q||P). In the case of
the exponential family, 1-divergence (α = 1) is equal to the KL divergence between
f (v) and g(v):

k( f ||g) =
∫

f (v)
[
log f (v) − log g(v)

]
dv. (6.11)

In addition, the dual −1-divergence (α = −1) is equal to k(g|| f ). Since we take a −1-flat
η-coordinate system, we consider −1-divergence. However, since this is an asymmetric
metric, we cannot use it directly as a kernel function. Therefore, we define a distance
between two samples by symmetrizing the divergence following the approach of [132].

dist
(
η(P), η(Q)

)
= D(−1)(P||Q) + D(−1)(Q||P)
= k(g|| f ) + k( f ||g)

= tr(ΣPΣ
−1
Q ) + tr(ΣQΣ

−1
P ) − 2D +

tr
(
(Σ−1

P + Σ
−1
Q )(µP − µQ)(µP − µQ)T

)
. (6.12)

To define a kernel that satisfies the Mercer conditions, we simply exponentiate the
distance following [132]:

Kkl(P,Q) = exp
(−a dist

(
η(P), η(Q)

))
, (6.13)

where a is a smoothing parameter. KL divergence requires computing the inverse of a
covariance matrix, which can be unstable when only a small number of local features
are available. Therefore, we add a regularization matrix to the covariance matrices to
improve numerical stability. That is, we let Σ → Σ + bI. This process is equivalent to
adding artificial white noise to local features.

Ad-hoc linear kernel

First, as the simplest baseline for linear approximation, we apply a linear kernel to the
η-coordinate system. This is a strong approximation that ignores the manifold metric,
and is severely affected by the nature of local descriptors and scaling effects. We call
this the ad-hoc linear (ad-linear) kernel.

Kad(P,Q) = η(P)Tη(Q). (6.14)
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Center tangent linear kernel

For a stricter formulization, we need to exploit the Riemannian metric in Equation 6.9,
which takes different values at each point of the η-coordinates. Here, we simply use
the metric for the mean, ηc =

1
N

∑N
i η(i) for approximation. This is inspired by the

initialization method of e(m)-PCA [2].

Kct(P,Q) = η(P)TGη(ηc)η(Q). (6.15)

Here, Gη(ηc) is the metric for ηc. This process is interpreted as approximating the
manifold using the tangent space of ηc. We call this the center tangent linear (ct-linear)
kernel. The ct-linear kernel can be computed efficiently by applying a normal linear
kernel to the transformed coordinate system:

ζ =
(
Gη(ηc)

)1/2η. (6.16)

As such, we can substantially improve the performance of the ad-hoc linear kernel
without losing scalability.

6.4 Rigorous Evaluation using Kernel Machines
First, we confirm the effectiveness of our global Gaussian approach. Then, we compare
the linear approximation derived from information geometry with theoretical upper
bounds (KL divergence). For a fair comparison, we test each method using kernel
machines in this section. Please note that learning with a linear kernel is basically
equivalent to applying linear methods directly to the original feature space. This topic
is discussed in the next section.

6.4.1 Datasets
We experimented with three challenging datasets: a 15 class scene dataset provided
by Lazebnik et al. [106] (LSP15), an eight class sports events dataset provided by Li
et al. [111] (8-sports), and a 67 class indoor scene dataset by Quattoni et al. [156]
(Indoor67). Figure 6.1 illustrates various images from each dataset.

LSP15 is currently the standard benchmark for scene classification tasks. It consists
of ten outdoor and five indoor classes. The 8-sports dataset has both scene recognition
and object recognition aspects. Images in this dataset are characterized by background
scenes with athletes in the foreground. Indoor67 is a new scene dataset published
in 2009. It is characterized by a large number of classes and their high intra-class
variations. Moreover, as pointed out in [156], indoor scene categorization is more
difficult than natural scene categorization.
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Figure 6.1: Images from benchmark datasets. Top left: LSP15 [106]. Bottom left:
8-sports [111]. Right: Indoor67 [156].

We followed the standard experimental protocols used in previous work. In LSP15,
we randomly chose 100 training samples for each class and used the remaining samples
for testing. Also, we randomly chose 70 training and 60 test samples from the 8-sports
dataset, and 80 training and 20 test samples from the Indoor67 dataset. Performance
was evaluated by the mean of the classification rate for each class1. This score was
averaged over many trials, with the training and test samples randomly replaced. For
all experiments in this section, we took the average over 10 trials.

6.4.2 Classification Methods

We employ two classification methods. The first is the SVM, which is a common tool
for classification in recent work on generic image recognition. The other is proba-
bilistic discriminant analysis (PDA) [86], a probabilistic interpretation of the classical
linear DA. The benefit of PDA is that we can build a multiclass classifier by solving
an eigenvalue problem only once, while SVM needs a fusion of binary classifiers. In
both SVM and PDA, we apply kernel functions to cope with non-linearity. For SVM
implementation, we use LIBSVM [33]. Below, we describe the implementation of the
PDA classifier in detail.

1Average of diagonal elements in the confusion matrix.
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Probabilistic discriminant analysis (PDA)

First, we introduce linear discriminant analysis (LDA)1, which is the core of PDA.
Let Σw denote the within-class covariance matrix, and Σb the between-class covariance
matrix. LDA is formulated as the following generalized eigenvalue problem.

ΣbW = Σ́wWΛ (WT Σ́wW = I). (6.17)

Here, Σ́w = Σw + γI. γ is a small positive number that decides the amplitude of the
regularization matrix, which is used to prevent overfitting. W denotes the eigenvectors,
while Λ is a diagonal matrix of corresponding eigenvalues (discriminant criterion) as
the elements.

Let t = N/K denote the number of samples in each class, and µη denote the mean
of an image feature over the entire dataset. The following projection maps an image
feature η onto a point in the latent space:

u =
(
t − 1

t

)1/2

WT (η − µη). (6.18)

The covariance of the latent values is given by the following expression:

Ψ = max
(
0,

t − 1
t
Λ − 1

t

)
. (6.19)

Using this structure, we classify a newly input sample ηs by maximum likelihood esti-
mation. We assume that us, the projected point of ηs, is generated from a certain class
C with probability:

p(us|uC
1...t) = N

(
us|

tΨ
tΨ + I

ūC, I +
Ψ

tΨ + I

)
. (6.20)

Here, uC
1...t are latent values of t independent training samples that belong to class C, and

ūC is their mean. We classify ηs as the class with the largest value for Equation 6.20.
This is an extremely simple process similar to the nearest-centroid approach.

Kernelized PDA

Kernel discriminant analysis (KDA) is interpreted as performing linear DA on an im-
plicit high-dimensional space using the kernel trick. Therefore, we can exploit the
structure of PDA in the same manner. We call this KPDA.

Suppose a kernel function K(η(i), η( j)) = 〈φ(η(i)), φ(η( j))〉 is given, where φ : η→
φ(η) denotes the projection that maps an input vector onto a high-dimensional feature

1In this chapter, LDA denotes linear discriminant analysis, and not latent Dirichlet allocation.
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space. Let N denote the number of training samples, ηK =
(
K(η, η(1)), ...,K(η, η(N))

)T

the kernel base vector, ΣK
w the within-class covariance matrix of the kernel base vectors,

and ΣK
b the between-class covariance matrix. KDA is formulated as the following

generalized eigenvalue problem.

ΣK
b V = Σ́K

wVΛK (VT Σ́K
wV = I). (6.21)

Σ́K
w , V , and ΛK are defined in the same manner as in Equation 6.17.

Similarly, the projection is obtained as follows:

uK =

(
t − 1

t

)1/2

VT (ηK − µK
η ). (6.22)

µK
η denotes the mean of kernel base vectors of training samples. Finally, we use the

same classification rule as Equation 6.20 to classify the test samples.

6.4.3 Experimental Setup
Local feature sampling

Generally, local feature extraction involves two steps. The first is keypoint detection,
while the second is feature description at the keypoints.

For keypoint detection, a visual saliency based approach, such as corner detec-
tion [75] and Difference of Gaussian filters [120], has been used for a long time. How-
ever, for image classification, keypoint detection based on filters does not always work
effectively because salient points in terms of low-level image patterns are not neces-
sarily related to semantic meanings. Nowak et al. [143] compared image classifica-
tion performance achieved by various keypoint detection methods on several datasets.
They showed that random keypoint detection achieved the best performance and iden-
tified that the most important factor for discrimination is the number of local features
extracted from images. Fei-Fei et al. [57] performed classification on a 13 scene im-
age dataset, and showed that grid-based keypoint detection gave the best performance.
Considering these results, we perform keypoint detection based on a grid (possibly for
every pixel). This strategy is called dense sampling and is used widely in the field of
generic image recognition [25; 57; 143; 205; 221]. Specifically, we space the key-
points five pixels apart, and extract local features from each patch of 16 × 16 pixels
with the keypoint at the center. Note that we extract local features from gray images in
all experiments in this section, even if color images are available.

As for local feature descriptors, we use a SIFT [120] descriptor (128-dim) and a
SURF [10] descriptor (64-dim). Mikolajczyk et al. [128] showed that the SIFT de-
scriptor has the best performance on average of all local feature descriptors. Despite
its computational cost being substantially reduced, SURF is known as a powerful de-
scriptor comparable with SIFT.
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Use of Spatial Information

We incorporate the spatial information of images into our kernels following the stan-
dard spatial pyramid kernel [106]. We hierarchically partition images into grids using
the zeroth layer (original image) to the L-th layer. Each l-th layer (0 ≤ l ≤ L) is
partitioned into a 2l × 2l grid. Then, we generate the local η-coordinate system inde-
pendently for each region and compute kernels such as Kkl or Kct. Finally, these are
merged as follows:

KGG(P,Q) =
1∑L

i=0 β
i

L∑
l=0

βl

22l

22l∑
k=1

K(l,k)(P,Q). (6.23)

Here, β ∈ R is the relative weight parameter of the layers. The suffix (l, k) indicates
that the element belongs to the k-th region of the l-th layer.

As for the implementation of the Kct kernel, since computing the metric for each
region is expensive, we simply use the one from L = 0 for all regions.

Bag-of-Visual-Words implementation

To provide a quantitative baseline, we implement the BoVW method using the same
local features sampled for the proposed method. We use the standard k-means method
to generate a codebook and set the number of visual words to 200 and 1000. To train
classifiers, we use a histogram intersection kernel and apply spatial pyramid match-
ing [106]. Henceforth, KBoVW denotes this kernel function.

In some experiments, we merge our proposed kernels (Equation 6.23) and those
for BoVW to further improve the performance. Here, we simply exploit a linear com-
bination.

KGG+BoVW =
1

1 + κ
KGG +

κ

1 + κ
KBoVW , (6.24)

where κ is a weight parameter. Note that the value of κ may not intuitively quantify
the importance of each kernel because KGG is not normalized, while the upper limit of
KBoVW is one.

6.4.4 Experimental Results
In depth study using LSP15 and the 8-sports datasets

First, we investigate the effectiveness of our global Gaussian approach using the LSP15
and 8-sports datasets. Table 6.2 gives the basic performance without the use of spatial
information. We tested both SIFT and SURF descriptors. The notation “ad-linear”
denotes the ad-hoc linear kernel, “ct-linear” the center tangent linear kernel, and “KL
div.” the KL divergence based kernel. As shown, the KL divergence based kernel
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Table 6.2: Basic results of the global Gaussian approach with the LSP15 and 8-sports
datasets using different kernels (%). No spatial information is used here.

LSP15 8-sports
SIFT SURF SIFT SURF

KPDA ad-linear 77.3 75.9 77.9 72.4
ct-linear 78.8 78.5 79.7 78.1
KL div. 80.4 81.5 81.7 79.6

SVM ad-linear 69.9 72.1 70.6 70.2
ct-linear 75.7 77.7 75.5 73.3
KL div. 76.3 78.3 78.3 74.9

Table 6.3: Performance comparison with spatial information for LSP15 (%). The
SURF descriptor is used.

L=0 L=1 L=2
GG KPDA (ad-linear) 75.9 78.8 79.8

KPDA (ct-linear) 78.5 81.6 82.3
KPDA (KL div.) 81.5 84.8 86.1
SVM (ad-linear) 72.1 73.2 74.3
SVM (ct-linear) 77.7 80.1 80.7
SVM (KL div.) 78.3 82.2 83.1

BoVW200 KPDA 71.9 78.5 81.1
SVM 70.6 76.3 78.6

BoVW1000 KPDA 77.1 80.7 82.5
SVM 74.9 78.0 79.4

achieves the best performance, followed by ct-linear and ad-linear. The ct-linear ker-
nel substantially improves performance compared to the ad-linear kernel, while PDA
achieves better performance than the SVM (LIBSVM). In addition, the results show
that SURF is superior for LSP15, while SIFT is superior for the 8-sports dataset.

Next, we investigate the effect of spatial information on our method. Here, we
implement BoVW to provide a baseline. In both our method and BoVW, we use spatial
pyramids up to L = 2. Based on the results of Table 6.2, we use SURF for LSP15 and
SIFT for the 8-sports dataset. Tables 6.3 and 6.4 give the results for LSP15 and the
8-sports dataset, respectively. Our method yields satisfactory results that compare well
with the BoVW using 1000 visual words. Furthermore, the results show that spatial
information can reasonably improve the performance of our method.

Finally, we attempt to merge our global Gaussian approach with BoVW. Although

86



Table 6.4: Performance comparison with spatial information for the 8-sports dataset
(%). The SIFT descriptor is used.

L=0 L=1 L=2
GG KPDA (ad-linear) 77.9 79.3 80.2

KPDA (ct-linear) 79.7 81.5 82.9
KPDA (KL div.) 81.7 83.2 84.4
SVM (ad-linear) 70.6 71.6 71.7
SVM (ct-linear) 75.5 77.2 78.8
SVM (KL div.) 78.3 80.2 81.4

BoVW200 KPDA 72.0 76.9 79.6
SVM 71.7 76.3 77.7

BoVW1000 KPDA 77.8 80.6 81.5
SVM 76.2 78.1 79.1

Table 6.5: Performance of the global Gaussian, BoVW, and combined approach (%).
An L = 2 spatial pyramid is implemented. Kernel PDA is used for classification. The
SURF descriptor is used for LSP15, while the SIFT descriptor is used for the 8-sports
dataset.

LSP15 8-sports
GG (KL) 86.1±0.5 84.4±1.4
GG (ct-linear) 82.3±0.4 82.9±1.0
BoVW200 81.1±0.7 79.6±1.1
BoVW1000 82.5±0.7 81.5±1.7
GG (ct-linear) + BoVW200 85.0±0.5 83.2±0.9
GG (ct-linear) + BoVW1000 85.3±0.5 83.4±0.7
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Figure 6.2: Merging the global Gaussian and BoVW approaches for use with the
LSP15 dataset. κ is the parameter for weighting the kernels (Eq. 6.24).
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Figure 6.3: Merging the global Gaussian and BoVW approaches for use with the 8-
sports dataset. κ is the parameter for weighting the kernels (Eq. 6.24).
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Table 6.6: Performance comparison with previous work (%). For our method, an L = 2
spatial pyramid is implemented, and kernel PDA is used for classification. We used
the SURF descriptor for LSP15 and Indoor67, and the SIFT descriptor for the 8-sports
dataset.

Method LSP15 8-sports Indoor67
GG (KL-div.) 86.1±0.5 84.4±1.4 45.5±1.1
GG (ct-linear) + BoVW1000 85.3±0.5 83.4±0.7 44.9±1.3
Previous 85.2 [221] 84.2 [205] 39.6 [134]

85.2 [135] 73.4 [111] 25.0 [156]
84.1 [205]
83.7 [25]

83.4 [134]

the KL divergence based kernel achieves high performance, it is not suitable for prac-
tical systems because of its low scalability. Therefore, here we combine the ct-linear
kernel of our method and the histogram intersection kernel of the BoVW method as
Equation 6.24. Table 6.5 shows that we can further improve the performance by con-
catenating different statistics of local features provided by the Gaussian and BoVW.
Figures 6.2 and 6.3 show the effect of the weighting parameter κ. Since the classifica-
tion accuracy seems to shift in a stable manner, it is expected that we can optimize κ in
a multiple kernel learning framework. Moreover, this approach is expected to be fea-
sible in a perfectly linear framework by further incorporating the linear approximation
techniques of the histogram intersection kernel [123; 188].

Comparison with previous work

We compare the performance of our approach for LSP15, 8-sports, and Indoor67 with
that of previous work. Recent state-of-the-art work achieves remarkably high per-
formance by concatenating various image features [24; 207; 210]. However, this is
beyond the scope of this research. Therefore, we summarize the results of previ-
ous studies using single feature description. Table 6.6 summarizes the best perfor-
mance of our method and that of previous work. For LSP15, hierarchical Gaussian-
ization [221], which is a GMM-based method, and the directional local pairwise bases
(DLPB) method achieved the previous best score of 85.2%. Our best score using the
KL divergence based kernel is 86.1%. The performance of a more scalable ct-linear +
BoVW technique is reasonably close at 85.3%. For 8-sports, the HIK-codebook [205]
achieved 84.2% and we obtained a slightly better score of 84.4%. Note that [205] im-
proved the performance by sampling local features from an original image and Sobel
image at five different scales, while we only extract features from a single scale orig-
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inal image1. For the Indoor67 dataset, the original work [156] achieved an accuracy
of 25.0% by concatenating the global description with a GIST descriptor [144] and
ROI detection using BoVW. Also, the local pairwise codebook (LPC) method [134]
achieved 39.6%. LPC is the previous version of DLPB and utilizes coupled local fea-
tures in a BoVW approach. We use the SURF descriptor for the Indoor67 dataset,
motivated by its promising performance with the LSP15 scene dataset. Our best scores
are 45.5% (KL div.) and 44.9% (ct-liner+BoVW), which are both superior to those of
the LPC method.

Thus, our approach obtained promising results for all three benchmarks.

6.4.5 Discussion
The objective in this chapter is to develop a coding method for image features com-
patible with linear methods such as CCD. As we have shown, GLC is effective when
used with the ct-linear kernel. This means that we can apply linear learning methods
directly to ζ-coordinates in Equation 6.16. Here, remember that ζ-coordinates are ob-
tained by applying an affine transformation to GLC (η-coordinates). This fact indicates
that we can use GLC directly as the input feature vector for learning methods invariant
to affine transformations of the feature space, such as CCA and LDA. Since CCD is
a CCA based method, GLC is an ideal representation for CCD. Moreover, since this
idea is equivalent to regarding the η-coordinate system as a Euclidean space, we can
possibly reduce computational costs using subspaces. We investigate this issue in the
next section.

6.5 Scalable Approach Using GLC and Linear Meth-
ods

6.5.1 Compressing GLC
Here, we review the implementation of GLC (Equation 6.8) in detail. In addition, we
consider some efficient variations.

Let there be N training images. Suppose there are p( j) D-dimensional local features
v( j)

k (k ≤ p( j)) in an image I( j)( j ≤ N). Further, let µ( j) = 1
p( j)

∑p( j)

k v( j)
k denote their

mean. This can also be interpreted as the zeroth-order auto-correlation. Also, let
R( j) = 1

p( j)

∑p( j)

k v( j)
k v( j)T

k denote the auto-correlation matrix of v( j)
k . GLC in Equation 6.8

is the concatenation of the zeroth- and first-order auto-correlations. Namely,

η( j)
0th+1st =

(
µ( j)

upper(R( j))

)
. (6.25)

1Without the Sobel images, [205] achieved 81.9%.
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This is the most basic coding of GLC. Here, upper() is a function that enumerates
the components in the upper triangular part of a symmetric matrix. For example,
upper(R( j)) becomes a D(D + 1)/2 dimensional vector.

Next, we introduce some simple coding methods using subspaces. The simplest
is to use certain parts of the original GLC features. For instance, if we use only the
zeroth-order correlations, we obtain

η( j)
0th = µ

( j). (6.26)

This is just the mean vector. In fact, many typical global features, including edge and
color histograms, are included in this framework. Similarly, if we only use first-order
correlations, we obtain

η( j)
1st = upper(R( j)). (6.27)

A drawback of GLC is that its dimensionality tends to be large. For example, the
dimensionality of the standard GLC is D + D(D + 1)/2. If D is large, it is difficult
to train a classifier. To address this problem we perform dimensionality reduction on
local features using PCA. Let R denote the auto-correlation matrix of local features
extracted from all training images, then

R =
1∑N

j p( j)

N∑
j

p( j)R( j). (6.28)

We can obtain the projection matrix U by solving the following eigenvalue problem:

RU = UΩ (UT U = I). (6.29)

Here, Ω is a diagonal matrix with eigenvalues as its elements. We cut off the principal
component space at an experimentally determined optimal dimension m, and use the
first m eigenvectors as the projection matrix Um. The resultant feature vector using
first-order correlations of principal components can be obtained as follows:

η̃( j)
1st = upper(Um

T R( j)Um). (6.30)

In addition, when the mean (zeroth-order correlations) vector is added,

η̃( j)
0th+1st =

(
µ( j)

upper(Um
T R( j)Um)

)
. (6.31)

We see that these variations are all linear transformations of the original GLC (Equa-
tion 6.25).
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coast forest mountain open country

highway inside city tall building street

Figure 6.4: Sample images from the OT8 dataset.

6.5.2 Datasets

In addition to LSP15 [106] used in the previous section, we experimented with a com-
monly used scene classification benchmark dataset called OT8 [144]. OT8 consists of
2,688 color images of eight classes shown in Figure 6.4. Each class has 260 to 410
sample images1.

In addition, we used the Caltech-101 dataset [55] for evaluation. This is currently
the most widely used benchmark for object recognition tasks. Caltech-101 contains
101 target objects and a background class. Each class has about 31 to 800 images. In
total, we performed the classification task with 102 classes.

We randomly chose 100 training images for each class in OT8 and LSP15, and 30
in Caltech-101. We used the remaining samples as test data, and calculated the mean
of the classification rate for each class. This score was averaged over many trials, in
which the training and test samples were replaced randomly. We used the average over
10 trials.

6.5.3 Experimental Setup

Local feature sampling

In this section, we experiment with the following four local descriptors.

1) SIFT [120]

2) RGB-SIFT [25]
1LSP15 is the updated version of OT8, in which seven classes were added by the authors of [57;

106].
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3) Local edge histogram

4) Local HSV color histogram

RGB-SIFT is a descriptor used for color images. We extract SIFT descriptions
independently from each RGB component and concatenate them to get a 128×3 = 384
dimensional vector. To provide a baseline, we also investigate the performance of
our method using edge histograms and color histograms as local descriptors. For the
edge histogram, we extract 72-dimensional gradient direction histograms from gray-
scale images. For the color histogram, we use the standard 84-dimensional HSV color
histogram from color images1. All features are scaled between zero and one.

Local features are extracted according to the dense sampling strategy presented in
the previous section. Here, we space the keypoints M pixels apart and extract a local
feature from each region of P×P pixels with the keypoint at the center. We investigate
the effect of M and P through experiments.

Classification method

We mainly use a linear PDA classifier (Section 6.4.2). Since LDA, which is the core
of PDA, is affine invariant, we can apply GLC features directly. In this sense, a PDA
classifier is suitable for the investigation in this section. In some experiments, we also
use SVM (LIBSVM) for comparison.

Theoretically, spatial pyramid matching (SPM) (Equation 6.23) can be implemented
in a simple manner with PDA. That is, we can use the concatenation of GLC features
from each region as a long input vector. Then we can train a PDA classifier with SPM
including the weight optimization for each region. However, a major drawback of this
approach is that the dimensionality of the feature vector becomes quite large. Since
the computational cost of LDA increases with the cube of the number of dimensions,
the training cost of this method would be immense.

Therefore, we develop an approximation method using a weighted log-likelihood
instead of spatial pyramid matching. We call this SP-PDA. As is the case in Sec-
tion 6.4.3, we first hierarchically partition images into grids. We use the zeroth layer (orig-
inal image) to the L-th layer, and partition each l-th layer (0 ≤ l ≤ L) into (l+1)×(l+1)
grids2. We extract image features and fit PLDA in all regions independently. Classifica-
tion is conducted through the maximization of the weighted log likelihood as follows:

L =

L∑
l=0

αl
(l+1)2∑

i=1

log p(u(l,i)
s |u(l,i)C

1...t ). (6.32)

1We use 36 dimensions for H, 32 dimensions for S, and 16 dimensions for V.
2Note that this partitioning is different from the one in the previous section.
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The suffix (l, i) means that the element belongs to the i-th region of the l-th layer. αl

is the weight parameter for the l-th layer, and is decided experimentally in a valida-
tion phase. This classification rule is equivalent to the minimization of the weighted
distance. We classify a new sample as the class Ĉ that has the minimum value for the
following distance:

Ĉ = argmin
C

L∑
l=0

αl
(l+1)2∑

i=1

(ũ(l,i)C
s )T (Θ(l,i))−1(ũ(l,i)C

s ), (6.33)

where,

ũ(l,i)C
s = u(l,i)

s −
tΨ(l,i)

tΨ(l,i) + I
ū(l,i)C, (6.34)

Θ(l,i) = I +
Ψ(l,i)

tΨ(l,i) + I
. (6.35)

Because our method learns models independently from each region, it does not
consider the co-occurrence of regions. In this sense, it is a somewhat approximate
approach. However, this approach also brings a major benefit. Once learning is com-
plete, we can tune the weight parameters freely without learning again. Therefore, the
validation phase of this method is easy.

6.5.4 Experimental Results
First, we investigate the effectiveness of GLC using the OT8 scene dataset. We apply
the GLC scheme to different local descriptors. We also investigate the effect of each
parameter for recognition performance. Then we compare out method with state-of-
the-art works. All experiments were conducted on an 8-core desktop PC (dual Xeon
3.20 GHz).

Baseline performance

Here, we extract the GLC with four different local descriptors and examine its perfor-
mance. For the edge/color histogram, we fix the parameters of the sliding window as
P = 10 and M = 5 (see Section 6.5.3). We extract the basic GLC as (Equation 6.25).
Regarding SIFT and RGB-SIFT, we fix the parameters at P = 16 and M = 5. Because
the dimensions of these descriptors are large, we perform dimensionality reduction us-
ing PCA beforehand, and then extract the first-order GLC as shown in (Equation 6.31).
We use m = 30 PCA vectors. We also compare the classification performance of PLDA
and SVM. We use experimentally decided optimal parameters for training classifiers.

Table 6.7 shows the performance of each local feature descriptor. First, we com-
pare the classification performance of GLC using different statistical moments of local
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Table 6.7: Baseline performance for OT8 (%) using GLC in different types. Classifi-
cation is conducted via PDA and SVM. Regarding the results for the SVM, the plain
number indicates the classification score using a linear kernel, while the italic number
in parenthesis indicates that using the RBF kernel. The best score for each descriptor
is shown in bold.

0th 1st 0th+1st
(Mean) (Cor.)

PDA SVM PDA SVM PDA SVM
Edge Hist 66.5 70.3 (71.0) 74.5 73.6 (72.7) 74.5 73.6 (72.8)
Color Hist 45.2 47.4 (50.8) 54.1 55.3 (55.9) 54.2 55.3 (56.3)
Gray-SIFT 73.1 72.5 (73.5) 84.8 80.9 (81.1) 85.0 80.9 (81.0)
RGB-SIFT 77.7 75.2 (76.2) 86.4 81.4 (81.6) 86.8 81.7 (81.9)

features. “0th” is the case in which only the mean of the local feature is used (Equa-
tion 6.26), and is similar to the normal global feature. “1st” is the case in which
only the first-order correlation of the local feature is used. We use Equation 6.27
for edge/color histograms, and Equation 6.30 for SIFT and RGB-SIFT. “0th+1st” is
the case in which we incorporate both the mean and first-order correlation. We use
Equation 6.25 for edge/color histograms, and Equation 6.31 for SIFT and RGB-SIFT.
Regarding the results for the SVM, the plain number indicates the classification score
for the SVM with a linear kernel, while the italic number in parenthesis indicates that
for the RBF kernel.

As shown by these results, the performance improves considerably for each lo-
cal descriptor when a first-order GLC is used. Also, using both the zeroth-order and
first-order GLC improves the performance slightly, except when an edge histogram
is used as the descriptor. Generally, however, we do not observe a major difference
between these two cases. Theoretically, it is reasonable to exploit both mean and cor-
relation information because they point out different statistics in a distribution of local
features. However, whether it is actually effective depends on the task and the nature
of the descriptors, since the mean and auto-correlations (diagonal elements of R( j),
see Section 6.5.1) are thought to be more or less similar. Moreover, it is shown that
PDA outperforms SVM for all descriptors except the color histogram. In particular,
it obtains high scores when first-order correlations of SIFT/RGB-SIFT are used. This
is because the affine-invariant property of PDA can absorb the effect of scale change
caused by PCA.
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6.5. Scalable Approach Using GLC and Linear Methods

Table 6.8: Classification performance of GLC and bag-of-visual-words (BoVW) for
OT8 (%). We implement BoVW with 200, 500, 1000, and 1500 visual words.

GLC BoVW BoVW BoVW BoVW
(0th+1st) 200 500 1000 1500

PDA 85.0 78.9 79.9 80.7 80.8
SVM (linear) 80.9 77.2 78.1 78.6 78.6
SVM (RBF) 81.0 77.5 78.3 78.8 78.7
SVM (HIK) N/A 80.0 82.0 82.7 83.0
SVM (χ2) N/A 80.8 82.5 83.2 83.7

Comparison with bag-of-visual-words

We compare the performance of GLC and BoVW using the same local features (Gray-
SIFT) sampled from images. We fix the descriptor size P = 16 and sampling step
M = 5 here. For an implementation of GLC, we follow Equation 6.31 using m = 30
PCA vectors. For an implementation of BoVW, we use the standard k-means clustering
to obtain visual words. We employ PLDA and SVM for classification and consider
their compatibility with features. As non-linear SVM classifiers for BoVW, we also
implement a histogram intersection kernel (HIK) and χ2 kernel [218]. Note that these
kernels are not directly applicable to GLC because they are designed for histogram
features.

Table 6.8 gives the results. It is clearly shown that GLC employed with PLDA
achieves superior performance. These results once again show the effectiveness of the
combination of GLC and PLDA. As for BoVW, although the score is relatively low
with linear classifiers, we can improve the performance considerably using non-linear
kernels such as the HIK and χ2 kernel. These results correspond to those obtained in
the previous chapter. In general, the performance of BoVW is comparable with that of
GLC when used with a larger number of visual words and a non-linear SVM. However,
this implies greater computational costs. (A more detailed discussion is given in the
final section of this chapter.) Moreover, the scalability of kernelized methods is seri-
ously poor as already discussed. Since the objective in this chapter is to develop image
features compatible with linear methods, it can be said that the GLC+PDA combina-
tion ideally satisfies this requirement.

Effect of parameters

Next, we investigate the effect of various parameters using the Gray-SIFT descriptor.
We use PLDA for classification.

First, we show the effect of the sampling step M in Figure 6.5. We use P = 16 and
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Figure 6.5: Effect of sampling density on performance (P = 16, m = 30).

 78

 80

 82

 84

 86

 88

 1e-07  1e-06  1e-05  1e-04

C
la

ss
ifi

ca
tio

n
 R

a
te

 (
%

)

Gamma (log)

m = 10
m = 20
m = 30
m = 40
m = 50

Figure 6.6: Effect of the dimensionality of PCA compression (P = 16, M = 5).
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m = 30 here. The horizontal axis depicts the log-scale of γ (generalization term of the
PLDA classifier), while the vertical axis gives the mean performance over 100 trials.
Figure 6.5 shows that the more densely we sample local features, the better the perfor-
mance is. The best performance was obtained with M = 1, that is, a feature description
in every pixel. This result corresponds to the study by Nowak et al. [143], who pointed
out that the number of local features extracted from images is the most important factor
for classification. However, the feature extraction cost increases dramatically with a
smaller M. This is the trade-off between accuracy and speed.

Next, we show the effect of the dimensionality compression parameter m. We use
P = 16 and M = 5 here. In general, dimensionality reduction by PCA is not related
to the semantic meanings of images. Thus, there is a possibility of losing important
information for discrimination if m is too small. Figure 6.6 shows the results. Not
surprisingly, the larger m becomes, the higher is the performance. However, as m
increases, so too does the computation time for fitting PLDA. This is another trade-off.
Without feature extraction time, our system takes about 0.1 s with m = 10, 1 s with
m = 30, and 10 s with m = 50 for fitting PLDA1.

Further, we investigate the scale parameter of the SIFT descriptor. Figure 6.7 shows
the performance using four different scale parameters. We use m = 30 and M = 5 here.
Bosch et al. [25] showed that multiscale SIFT feature description improves the clas-
sification performance. Therefore, we also test multiscale feature description (P = 16

1As for classification of the test samples, it takes less than 0.05 s to classify all the test samples
(1,888 in OT8) in all cases mentioned above.
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Figure 6.8: Effect of the weight parameter using at most the 2nd layer (P = 16, m = 30,
M = 5, γ = 5.0e − 06).

and 32). We extract GLC from two different scales independently, and then concate-
nate them to obtain the final image feature. The results show that the scale of the
descriptor is an important parameter to achieve good performance. Performance can
be further improved by concatenating features of two different scales.

Contribution of spatial information

We verify the performance of SP-PDA, which utilizes spatial information. Figure 6.8
shows the performance against relative weight parameters using at most the first layer
(L1), while Figure 6.9 shows the performance using at most the second layer (L2).
In both cases, our method improves performance. Our best results are 87.2% for L1,
and 88.0% for L2. Our results show that the proposed method is not very sensitive
to weight parameters, and merely by providing equal weights for each layer we can
achieve good results. That is, α1/α0 = α2/α0 = 11. In this case, we obtained 87.0%
for L1 and 87.8% for L2. This stability is important for practical use.

Dimensionality reduction issues

As preprocessing for compressing local features, we need to compute the projection
matrix of PCA within the training samples. Although this computational cost is sub-
stantially lower than that of building visual words by clustering, it can be a problem in
really large applications. To perform dimensionality reduction without preprocessing,
we investigate two ideas. The first is simply to use randomly sampled elements of the
original correlations (elements of upper(R( j)) in Equation 6.27) as the first-order GLC.

1This is equivalent to the naive Bayes fusion of classifiers for each region.
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Figure 6.9: Effect of the weight parameter using at most the 3rd layer (P = 16, m = 30,
M = 5, γ = 5.0e − 06).

We call this R-GLC. The second is to share the standard projection matrix obtained
from a large repository of generic images, in the same manner as PCA-SIFT [94]. To
discuss the latter, we compare two GLC features taken from OT8. One uses the projec-
tion matrix obtained from the training dataset in OT8, which is the standard methodol-
ogy. The other uses the matrix obtained from 3,000 random images of the Caltech-101
dataset. The objective is to consider how projection matrices obtained from Caltech-
101 can be generalized to an entirely different dataset, OT8. As for R-GLC, we sample
m(m+ 1)/2 elements of first-order correlations such that the dimension of the resultant
feature will be the same as that of the others. We shuffle the elements for each of the
100 trials.

Figure 6.10 shows the evaluation results. We set m = 30, M = 5 here. Naturally,
the performance of R-GLC is not as good as that of the other two cases using PCA
projections (about 0.7% decrease) because it ignores the structure of the feature space.
However, considering that R-GLC exploits a simple random approach and needs no
preparation for dimensionality compression, its performance is good in comparison.
This result is possibly due to the nature of the SIFT-descriptor. The SIFT-descriptor
basically consists of edge histograms. Therefore, correlations of feature elements di-
rectly express the strength of certain shape patterns and are considered to be less re-
dundant. In this sense, simply using some original feature elements is a reasonable
approach, although the performance will be affected by randomness.

Furthermore, it is remarkable that the projection matrix from Caltech-101 achieves
almost the same performance as the original method (about 0.05% decrease). This
encouraging result suggests the possibility of sharing a common projection matrix.
This issue needs to be further investigated in our future work.

In summary, a task-independent dimensionality reduction method would be the
best way to precompute a PCA projection from a large image database. If such a
database were not available, we could use the R-GLC strategy at the expense of clas-
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Figure 6.10: Results using different dimensionality compression methods (P = 16,
m = 30, M = 5). We used two different projection matrices (one from OT8 and the
other from Caltech-101), and random sampling.

sification performance.

Comparison with previous studies

We compare the performance of our method with previous studies using the OT8,
LSP15, and Caltech-101 datasets. We basically summarize the results of previous
studies using a single feature description. We use RGB-SIFT as the descriptor for OT8
and Caltech-101, and Gray-SIFT for LSP15. Moreover, we extract GLC from two
different scales, P = 16 and 32, and set m = 50 for dimensionality compression. We
summarize both the previous work and our current study, with spatial information (with
SI) and without (no SI).

Table 6.9 gives the results of the performance comparison. We first consider the
results for OT8 and LSP15. In [25; 106], the authors extract BoVW using the SIFT
descriptor, and perform classification via SVM. The method in [198] estimates a part-
based generative model of images using the conditional random field (CRF), and per-
forms classification and segmentation of an image simultaneously. However, its com-
putational cost is even higher than that of BoVW. Our method obtains relatively high
performance when spatial information is not used (L0), indicating the effectiveness of
GLC as a global description of images. When spatial information is included (with
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6.5. Scalable Approach Using GLC and Linear Methods

SI), Perina et al. [148] and our Global Gaussian method [141] (KL-divergence based
kernel) achieved the best performance for the OT8 and LSP15 datasets, respectively.
Although the GLC+PDA method follows a simple linear framework, the difference in
performance is just 2%. Instead, it enables fast training and recognition.

For the Caltech-101 dataset, the “no SI” case of [106] is the standard BoVW base-
line, achieving a 41.2% classification rate. In addition, the global approach in [77]
achieved 39.6% by concatenating various global features. Our L0 result substantially
outperforms these standard methods.

Many state-of-the-art methods are based on modifications of BoVW or GMM, and
achieve remarkably high scores [135; 195; 211; 221]. For example, comparisons
with [135] show that the difference in performance is more emphasized in Caltech-
101 than in LSP15. This is probably due to two main factors. The first is the manner
in which spatial information is used. In Caltech-101, objects are scaled to roughly the
same size and are facing the same direction. Also, they are placed in the center of im-
ages. Therefore, spatial information is thought to be especially useful in Caltech-101.
Because our SP-PDA method is an approximate approach, it may lose some discrimi-
native information. The second is the nature of the object recognition task. Compared
to abstract scene images, object images often have specific local patterns. The key to
object recognition is to exploit such distinctive information. BoVW and GMM, which
can model local structures in the local feature space, are thought to be more suited
to doing this than GLC. However, as discussed in the previous section, BoVW and
GLC are not conflicting concepts. They can be combined to improve performance. We
further investigate this issue using a large dataset in Chapter 7.

Computational costs

Here we estimate the computational cost of GLC in terms of both final feature ex-
traction and preprocessing. Let p denote the number of local features in an image, D
denote the dimension of the local features, and V denote the number of visual words
in the BoVW scheme.

The computational cost of the final image feature extraction per image is O(pD2)
for our method when PCA compression is not used (Equation 6.25). When PCA com-
pression is exploited (Equation 6.31), this becomes O(pm(D + m)), where m < D.
In contrast, the BoVW method costs O(pVD) to extract a visual word histogram per
image. In most studies, V is larger than D1. This time could be shortened using an
approximate nearest-neighbor search method such as the kd-tree [12] and locality sen-
sitive hashing (LSH) [42]. However, this creates another trade-off between accuracy
and speed.

Next, we describe the computational costs of preprocessing. The basic GLC (Equa-

1For example, while the dimension of SIFT is D = 128, V is usually set to a few thousand.
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Table 6.9: Comparison of the performance using two scene datasets and Caltech-
101 (%).

Dataset GLC + PDA Previous
L0 L1 L2 no SI with SI

OT8 88.8 90.5 91.1 92.8 [148]
82.3 [198] 90.2 [198]
82.5 [25] 87.8 [25]

LSP15 80.0 83.2 84.1 81.5 [141] 86.1 [141]
85.2 [221]
85.2 [135]
84.1 [205]

72.7 [25] 83.7 [25]
74.8 [106] 81.4 [106]

Caltech-101 55.0 63.3 64.8 77.3 [135]
73.4 [195]
73.2 [211]
73.1 [221]
67.7 [25]

66.2 [217]
41.2 [106] 64.6 [106]
58.2 [68]
39.6 [77]
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tion 6.25) does not need preprocessing. Furthermore, we can compress GLC without
any cost using a random subspace or shared projection. Similarly, it has been reported
that randomly chosen visual words can achieve performance reasonably close to that
obtained from clustering [143]. However, to obtain the best performance, both meth-
ods need to go through a preprocessing step. The BoVW method usually requires a
preprocessing step in which the local features are clustered using the k-means algo-
rithm 1.

The computational cost of the batch process of building visual words is O(pNVDI),
where I is the number of iterations. This could be greatly increased with the scale of
the task, because both N and V would increase. In addition, convergence gets slower (I
becomes greater) in a larger setup. Moreover, a massive amount of memory is used to
store the local features of the training samples for efficient computation, with the order
of memory use O(pND). Our method does not require a substantial preprocessing step.
The only preparation necessary is to find the PCA matrix, the complexity of which is
O(D3 + pND2), which is linear in the number of training samples. In addition, this
operation requires a small amount of memory O(D2) as it needs to preserve only the
covariance matrix in memory.

Finally, we report the actual computation times for the OT8 dataset using a standard
computational resource2. Here, we use the Gray-SIFT descriptor, and set the sampling
rate as M = 10. Also, we set the number of visual words as V = 15003. Overall, the
parameters are: N = 800, D = 128, p = 600, and V = 1500. We used a Xeon 3.20
GHz CPU with single-thread implementation. Our method takes just 90 seconds to fit
PCA, while building the visual words by k-means clustering takes 18 hours. As for the
final image feature description, GLC takes 60 ms per image, while BoVW takes 3.8 s.

Thus, GLC is not only informative, but also quite fast and highly scalable.

1In practice, a portion of local features are used for clustering.
2Not including local feature extraction.
3This is reported as the best parameter by Bosch et al. [25]
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Chapter 7

Evaluation of Large-scale Image
Annotation

In this chapter we implement a scalable and accurate image annotation system by com-
bining our annotation method (Chapter 4) and image features (Chapter 6). Using a
large dataset of twelve million images, we show the effectiveness of our method.

7.1 Dataset Construction (Flickr12M)
We used images from Flickr 1 to build a large-scale training dataset. Flickr is the largest
photo sharing site, where many users upload their photos. Images are publicly avail-
able and are tagged with certain keywords (social tags) by Internet users. Currently,
thousands of images are uploaded every minute. In 2010, more than 4 billion images
were already stored on the site [197].

Figure 7.1 shows some examples of Flickr images and their social tags. In this
section, we use the social tags as the ground truth labels. Basically, tags are expected
to describe the content of images. However, some tags are totally senseless or unrelated
to the content. Therefore, compared to traditional supervised datasets such as Corel5K,
our dataset will be a difficult one to use with noisy and miscellaneous data.

7.1.1 Downloading Samples
As we need some keywords to retrieve images from Flickr, we used the words listed
in the “All time most popular tags”2 on Flickr as triggers3 (Table 7.1). Note that these
triggers are not used directly as the ground truth.

1http://www.flickr.com/
2http://www.flickr.com/photos/tags/
3This procedure should be replaced by a random crawling in the future, as it could bias the data.
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Figure 7.1: Examples of Flickr data: images and corresponding social tags.
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Table 7.1: The most popular 145 tags on Flickr. These tags were used for the initial
download.

animals architecture art august australia autumn baby band barcelona beach
berlin bird birthday black blackandwhite blue boston bw california cameraphone
camping canada canon car cat chicago china christmas church city
clouds color concert cute dance day de dog england europe
fall family festival film florida flower flowers food football france
friends fun garden geotagged germany girl girls graffiti green halloween
hawaii hiking holiday home house india ireland island italia italy
japan july june kids la lake landscape light live london
macro may me mexico mountain mountains museum music nature new
newyork newyorkcity night nikon nyc ocean paris park party people
photo photography photos portrait red river rock rome san sanfrancisco
scotland sea seattle show sky snow spain spring street summer
sun sunset taiwan texas thailand tokyo toronto tour travel tree
trees trip uk urban usa vacation vancouver washington water wedding
white winter yellow york zoo

We downloaded 18,176,861 images containing 1,486,869 unique tags for the ini-
tial collection. We filtered out minor tags occurring fewer than 2,000 times, and then
removed images with no tags. Consequently, we obtained a dataset consisting of
12,283,296 images with 4,130 labels (Flickr12M). The size of each image is about
512×384.

For the test dataset, we crawled 10,000 test images from Flickr in the same way as
for training dataset. It should be noted that there are many near-duplicated images on
Flickr (Figure 7.2). These images are uploaded by the same user in the same situation,
and annotated with the same social tags. Since it is undesirable to have these images
both in the training and test datasets, we carefully separated the test set from the train-
ing dataset in terms of timestamp, so that the test set would not contain near-duplicated
images of those in the training dataset.

7.1.2 Statistics of Flickr12M Dataset

Table 7.2 summarizes the statistics of Flickr12M. Each image is annotated with an
average of 3.47 words. This is similar to other datasets such as Corel5K. Table 7.3 and
Figure 7.3 show the word frequencies. As shown, word occurrence is highly biased
and a small number of words are dominant. This is a common problem in web image
mining, making it difficult to ensure diversity in annotation. Table 7.4 lists the 10 most
frequently used words.
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Figure 7.2: Examples of near-duplicate images in the Flickr dataset. Each row corre-
sponds to a duplicate set. These images are annotated with the same social tags.

Table 7.2: Statistics of the Flickr12M dataset.
dictionary size 4130
# of images 12,283,296
# of words per image (avg/max) 3.47/75
# of images per word (avg/max) 10325/491595

Table 7.3: Word frequencies in Flickr12M.

Frequency # of words
200,001 - 16
100,001 - 200,000 53

50,001 - 100,000 75
30,001 - 50,000 80
20,001 - 30,000 134
10,001 - 20,000 414

5,001 - 10,000 844
2,000 - 5,000 2514
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Table 7.4: Most frequently used words in Flickr12M.

Frequency
wedding 491595
vacation 355111
travel 350101
party 274706
japan 273445
family 263835
beach 260641
summer 251521
italy 243073
trip 239890
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Figure 7.3: Word frequencies in the Flickr12M dataset.
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7.2. Preliminary Experiments

7.2 Preliminary Experiments
First, using various subsets containing up to 1.6M training images we performed the
same experiments carried out in Section 5.2 to confirm the effectiveness of our method
for web-scale problems. Furthermore, by comparing several image features, we show
that GLC based ones are highly effective.

7.2.1 Image Features
We used the following image features.

1) Tiny image [177] (3072dim)

2) RGB color histogram (4096dim)

3) GIST [144] (960dim)

4) HLAC (2956dim)

5) SURF GLC (2144dim)

6) SURF BoVW (1000dim)

7) SURF BoVW-sqrt (1000dim)

8) RGB-SURF GLC (3432dim)

The tiny image feature vector consists of pixel values of downsized (32 × 32) im-
ages. In the case of three-channel images, the dimensions are 32× 32× 3 = 3072. The
RGB color histogram is a feature employed in TagProp [71]. Each color component is
divided into 16 bins. HLAC is the same as that used in Chapter 5. We used the SURF
descriptor to implement GLC and BoVW. We extracted local features in a dense sam-
pling approach1. We constructed 1000 visual words using k-means clustering. SURF
BoVW is the standard implementation of a visual words histogram. Moreover, as
pointed out in [151] a Bhattacharyya kernel of a BoVW is equivalent to a linear kernel
of the square root of BoVW (BoVW-sqrt). This suggests that BoVW-sqrt is a more
appropriate representation for linear methods. Also, RGB-SURF is the concatenation
of SURF features extracted from each color component. Therefore, its dimensionality
is 64 × 3 = 192. We extracted RGB-SURF GLC according to Equation 6.31 using 80
principal components.

1Here, we spaced the keypoints eight pixels apart, and extracted local features from each patch of
16 × 16 pixels with the keypoint at the center. We extracted 1, 200 ∼ 1, 300 local features per image.
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7.2.2 Evaluation Protocol
The system annotated five words per image in the same manner as in Chapter 5. We
then evaluated the performance with two different F-measures. The first is the F-
measure of the means of word-specific recall and precision, the same metric as used in
Chapter 5. For further details, refer to Appendix A. We call this the word-centric F-
measure (FW). FW increases if the system succeeds in annotating more words. There-
fore, it is appropriate to evaluate the diversity of annotation.

In addition to FW we introduced an image-centric F-measure (FI). For a test image
I j, we let x denote the number of words that can be correctly annotated, y denote the
number of ground truth tags of I j, and z denote the number of words that the recognition
system outputs (in this experiment, z is always five).

Then the recall and the precision of I j are defined as:

Recall(I j) = x/y, (7.1)
Precision(I j) = x/z. (7.2)

They are averaged over all the test images to obtain the image-centric mean recall (MRi)
and mean precision (MPi). Finally, we use the F-measure thereof.

FI =
2 ×MRi ×MPi

MRi +MPi
. (7.3)

FI directly reflects the accuracy of annotation for each test image. Therefore, contrary
to FW , FI indicates the annotation accuracy of some basic words, rather than their
diversity.

7.2.3 Experimental Results
We set the dimensionality of the latent space d to 20, 50, 100, 200, and 300, respec-
tively. We then performed k-NN annotation with k = 50, 100, 200, 400, 800, 1600 and
took the best performance. Note that we did not test MLR here, since no difference
was observed in its performance from that of PLS and CCA in Section 5.2.

We compared the methods for each feature doubling the number of training images.
For convenience of reference, the results are summarized in Appendix D. We see that
for all methods, the more samples that are used, the better is the annotation accuracy.
Compared to the scores for the 100K dataset, FI increases by 20% and FW increases
by 100 ∼ 200% when using the 1.6M dataset. As shown, the improvement in FW is
substantial. This result indicates that dataset size is important to realize diversity in
annotation.

As for HLAC features, CCD2 always obtains the best score. This result corre-
sponds to that shown in Section 5.2. Moreover, we observe similar results with SURF
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Figure 7.4: Annotation performance of each feature with CCD2 (<1.6M samples).

GLC and RGB-SURF GLC. As for the other features, CCD is not always superior,
as nPLS sometimes outperforms CCD. As the example of the RGB color histogram
shows, although the scores of CCA and CCD are worse when a small number of train-
ing samples are used, they outperform other methods when the number of training
samples is increased. This is probably because CCA becomes more stable with a larger
dataset. This result indicates the superiority of our method in a large-scale problem.

Figure 7.4 summarizes the scores for each feature with CCD2. For each feature,
we selected the best dimensionality d. It is notable that HLAC and GLCs substan-
tially outperform other features. Considering that HLAC can be interpreted as a kind
of GLC, we see that the combination of CCD and GLC based features works quite
well. Overall, RGB-SURF GLC obtains the best results in terms of FI score. Also, it
achieves the best FW score using the 800K and 1.6M datasets.

In addition, we observe that BoVW-sqrt always outperforms BoVW, although they
are both based on the same local features and visual words. As expected, BoVW-sqrt
is a better representation for linear problems.

Based on these results, HLAC, SURF GLC, and SURF BoVW-sqrt features are
used with the full Flickr12M dataset in the experiments in the next section1.

1We did not use RGB-SURF GLC in the subsequent experiments since it is computationally too
expensive.
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7.3 Large-scale Experiments
7.3.1 Quantitative Evaluation
First, we examine the performance of each individual feature. Figure 7.5 shows the
annotation performance of SURF BoVW-sqrt, SURF GLC, and HLAC features. We
compare PCAW (PCA for BoVW-sqrt), CCA, and CCD2. In addition, Figure 7.6
shows the results when concatenated features are used. Since the scale of each feature
is different, we only test CCA and CCD2 for concatenated features. As in the pre-
liminary experiment, the annotation accuracy improves in a logarithmic scale with the
number of training samples. In all cases, we observe that CCD2 outperforms CCA.

Moreover, it is shown that annotation accuracy substantially improves when multi-
ple features are used. The best result is obtained when all the features are used. These
results support the conclusion in Section 2.2.2, which states that using as many features
as possible is the key to bridging the semantic gap. Figure 7.7 shows the superimposed
results of CCD2.

7.3.2 Qualitative Effect of Large-scale Data
Here, we describe the advantage of using large-scale datasets with some qualitative
examples. Since our method is an example-based method, the quality of the nearest
neighbors determines the annotation performance. The more semantically similar the
retrieved neighbors are, the better is the annotation. We illustrate three examples in
Figures 7.8, 7.9, and 7.10, respectively. For each query image, we give the top 10
annotations and 25 nearest training samples. Here, we omit ambiguous annotations
related to time and place.

Figure 7.8 (a stained glass) is the most illustrative example. When using the 100K
dataset, only one stained glass image is included in the 25 nearest samples, while more
visually similar sports images are retrieved. Consequently, the system outputs irrele-
vant words such as “football”. When the dataset grows to 1.6M, the quality of neigh-
bors seems to improve, although the annotation results are still poor. When the full
dataset is used, all 25 neighbors are stained glass images. As a result, the annotation
result is greatly improved.

Similar results are observed in Figures 7.9 and 7.10. The query image in Figure 7.9
(a dolphin) is confused with abstract sea images when the dataset is small, while more
dolphin images are retrieved as the dataset grows. The query image in Figure 7.10
shows a roller coaster at Disneyland called “space mountain”. The system recognizes
the content of this image correctly as the dataset grows. When the full dataset is used,
it even knows that this is an image from Disneyland.

Thus, as the number of training samples increases, the semantic gap seems to be re-
laxed and more appropriate neighbors are retrieved. The annotation accuracy improves
accordingly.
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Figure 7.5: Annotation performance of SURF BoVW-sqrt, SURF GLC, and HLAC
features (<12.3M samples).
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Figure 7.6: Annotation performance of combinations of SURF BoVW-sqrt, SURF
GLC, and HLAC features (<12.3M samples).

115



7.3. Large-scale Experiments
W

or
d

 c
en

tr
ic

 F
-m

ea
su

re
 (

F
  

)
w

Im
a

g
e 

ce
n

tr
ic

 F
-m

ea
su

re
 (

F
  

)
I

Dataset size Dataset size

SURF GLC + HLAC

SURF BoVW-sqrt + SURF GLC + HLACHLAC 

SURF GLC

SURF BoVW-sqrt + SURF GLCSURF BoVW-sqrt

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

100K 200K 400K 800K 1.6M 3.2M 6.4M 12.3M

0.07

0.08

0.09

0.1

0.11

0.12

100K 200K 400K 800K 1.6M 3.2M 6.4M 12.3M

Figure 7.7: Comparison of annotation performance with CCD2 (<12.3M samples).

116



Nearest training samplesAnnotation results

Query image

100K

1.6M

12.3M

church 

stainedglass

football

bath

city

vacation

travel

cathedral

window

glass

football

soccer

varsity

girls

boys

travel

party

family

school

high

football

soccer

festival

college

futbol

park

people

cycling

marchingband

vacation

Figure 7.8: (1/3) Example of annotation using a varying number of training samples.
Correct annotations are written in red. For each case, the 25 nearest images are shown.
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Figure 7.9: (2/3) Example of annotation using a varying number of training samples.
Correct annotations are written in red. For each case, the 25 nearest images are shown.
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Figure 7.10: (3/3) Example of annotation using a varying number of training samples.
Correct annotations are written in red. For each case, the 25 nearest images are shown.
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

The key to realizing versatile and high performance generic image recognition is sta-
tistical machine learning using a large number of examples. However, since previous
methods lack scalability with respect to the number of training samples, it has been
practically impossible to utilize a large-scale image corpus for training and recogni-
tion. Therefore, in this thesis, we have tackled this problem and developed a scalable
and accurate generic image recognition (image annotation) algorithm. This is realized
by two technologies: discriminative distance metric learning between samples, and a
new framework for image feature extraction. Because these technologies are mutually
dependent, it is critically important that they are designed taking into account their
compatibility. Finally, having applied our method to a large-scale dataset of twelve
million images, we show its effectiveness. Below, we summarize some of the contri-
butions of this thesis.

Discriminative Distance Metric Learning for Image Annotation (Chap-
ters 4 and 5)

For image annotation, where the system outputs multiple words for an image, a non-
parametric example-based approach is effective. This is probably because this ap-
proach can implicitly utilize co-occurrence information of labels in a dataset. Also, a
non-parametric method can accept qualitatively new samples more stably compared to
parametric models. However, the following two problems must be considered.

• How to define a distance metric between samples that relaxes the semantic gap.

• How to reduce the dimensionality of samples.
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8.1. Conclusion

To address these problems, we need to exploit a statistical machine learning method.
For large-scale problems, it is desirable for the training complexity to be linear in the
number of training samples. Therefore, we focused on canonical correlation analy-
sis (CCA), which is a technique for bimodal dimensionality compression, to learn a
discriminative distance metric between samples. This approach has the following ben-
efits.

• Training complexity is linear in the number of training samples.

• It is not necessary to access data repeatedly during training.

• Memory use for training is small and constant.

• During recognition, the cost of computing the sample distance is relatively small.

Classical CCA, however, only performs dimensionality reduction and does not give
any information about the distance metric. Therefore, by exploiting the probabilistic
structure of CCA, we derived a theoretically optimal distance metric, which we call
the canonical contextual distance (CCD). Through experiments, non-parametric image
annotation based on CCD is shown to achieve comparable performance to state-of-the-
art methods with smaller computational costs for learning and recognition.

We compared CCD with related methods, PLS and MLR, which are both bimodal
dimensionality reduction methods similar to CCA. With certain image features, PLS
sometimes outperformed CCA and CCD in recognition accuracy. This is probably be-
cause PLS is a numerically stable method and works relatively well when non-linear
image features are used. In such a case, however, the linear assumption itself is in-
appropriate and severely deteriorates annotation accuracy, compared to the original
generative distance metric.

When image features were originally embedded in a Euclidean space, or implicitly
embedded within a kernel method, CCD always achieved the best result. This indi-
cates that CCD is generally the best method in this framework when the Euclidean
assumption holds. As shown, to use CCD effectively, we must also pay attention to
input image features. This is discussed in the next subsection.

Framework for Image Feature Extraction (Chapter 6)
CCD assumes that image features are embedded in a Euclidean space. In other words,
the inner product in the feature space should reflect the similarity of features in terms
of a generative process. However, this assumption does not hold for many practically
used image features. If we apply CCD directly to them, the performance may drop
substantially. In general, a kernel method is used to avoid this problem. However,
to obtain good recognition accuracy, a number of samples must be used as bases for
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kernelization. As a result, scalability of the method is lost, making a large-scale appli-
cation impossible. This is a common problem in previous image recognition methods.

To address this problem, we need to design image features that are originally em-
bedded in a Euclidean space. In this thesis, we proposed the global Gaussian approach,
in which we model a distribution of local features in an image with a single Gaussian.
Further, using the technique of information geometry, we approximately code a Gaus-
sian into a global feature vector called the generalized local correlation (GLC).

The objective of the global Gaussian approach is to exploit low-level statistical
properties of local feature distributions, which historically, have not attracted much
attention. Our approach achieved the best performance with three scene recognition
benchmarks. Characteristics of the global Gaussian are listed below.

• Supports an arbitrary local feature descriptor.

• Is an image-specific representation.

• Even after linear approximation, it achieves promising performance comparable
to the standard bag-of-visual-words (BoVW).

• By using both global Gaussian and BoVW, we can further improve performance
because they are mutually complementary.

GLC, our final feature vector, consists of the affine coordinates of the manifold of
Gaussian distributions. GLC has the following properties.

• It is directly applicable to linear methods invariant to affine transformations of
the input feature space, such as CCD.

• It is extracted faster that the standard BoVW.

Thus, GLC is an ideal representation for CCD based image annotation methods.
Moreover, the classical HLAC feature can be interpreted as a specific example of

GLC. In other words, it is basically equivalent to GLC using pixel values as the local
feature descriptor. While the compatibility of the HLAC feature and linear methods is
empirically known, our analysis theoretically supports this fact.

Effect of Large-scale Image Datasets (Chapter 7)
The combination of CCD and GLC enables a scalable and accurate image annotation
system, our final goal. We tested our system on a large-scale dataset of twelve million
web images and obtained the following results.

• The more training samples that are used, the higher is the probability of find-
ing semantically similar samples. As a result, both diversity and accuracy of
annotation improves.
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8.2. Unsolved Problems

• Compared to other dimensionality reduction methods, CCD always obtains the
best score.

• Performance improves when multiple image features are used. In particular,
GLC based features (including HLAC) are effective.

As described, CCD is theoretically the best distance metric that can be trained with
linear complexity. With small subsets, where only hundreds of thousands of samples
are used, other methods such as PLS sometimes outperform CCD. On the contrary,
CCD is always superior as the number of samples increases. This is because the eigen-
value decomposition of CCA, the core of CCD, becomes more stable with an increased
number of samples. This result indicates that CCD shows its true power in large-scale
problems. Moreover, since GLC is approximately embedded in a Euclidean space
and directly applicable to CCD, it is reasonable that a combination of GLC and CCD
achieves the best result. Our experimental results strongly support the effectiveness of
large-scale generic image recognition using our method.

Moreover, it is shown that annotation accuracy substantially improves when multi-
ple features are concatenated. This fact supports our discussion in Section 2.2.2 that us-
ing as many features as possible is the key to bridging the semantic gap. It is expected
that by using many GLC features based on different descriptors, we can consistently
improve annotation performance.

8.2 Unsolved Problems

In this thesis, we established a mathematical framework for large-scale image anno-
tation, which has previously been an extremely difficult task. Still, we need to solve
some other problems before practical annotation systems can become a reality.

Building a High-quality Training Corpus

In addition to learning methods, the quality of the training corpus also determines
the performance of annotation systems. Due to the advances in crowd sourcing frame-
works, we can now build large-scale datasets with a labor-intensive approach [46; 173].
However, since many anonymous people are included, it is difficult to maintain quality
and consistency of image labeling. Moreover, in generic image recognition, the ground
truth itself is not obvious in many cases. Many current works use external ontologies,
such as WordNet [58], although its applicability to image recognition has not been
thoroughly investigated. We need to consider and develop more appropriate ground
truths for generic image recognition.
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Incremental Learning
Irrespective of its size, a pre-defined corpus can only support general visual knowledge
and does not cover the entire world. It cannot deal with objects or scenes that only
exist in local environments, or newly discovered concepts. Moreover, even in known
categories, recognition is difficult when the appearance of a query is very different
from the training samples. In such cases, the system should incrementally learn the
new visual knowledge.

To realize this, the system must be able to discover unknown categories. This is
an essentially difficult challenge, since it is contradictory to usual pattern recognition
that aims to generalize knowledge from experience. To balance both factors, a semi-
supervised framework could be considered. Also, we need to design a framework in
which the system can ask human users questions about unknown objects.

8.3 Future Works

Integration with Region Labeling Methods
We believe that global image labeling is currently the most fundamental and important
topic in generic image recognition, and have thus focused on the image annotation
problem. In the future, we would like to integrate region labeling (object detection)
algorithms with our annotation method. First, a rough scene of an image could be
sketched via image annotation. Then, we could run detectors of objects that are likely
to appear in the scene. This two stage approach would lead to an efficient recognition
system. Moreover, as a more advanced problem, we could improve performance by
simultaneously optimizing the image annotation and detection processes.

Multimodal Extension
While generic image recognition considers a still image as input, we could integrate
other resources in some applications. For example, current smart phones are usually
equipped with GPS and inertial sensors, which could provide additional information
for recognition. Also, in robot and car systems, we could use many other information
sources such as audio and video to develop practical applications. To integrate the
varied information provided by multiple modals, we could possibly use a multimodal
extension of canonical correlation analysis [95].

Towards Real-world Image Recognition
The Internet is thought to provide sufficient training data for recognizing personal pho-
tos and online images. In fact, most currently used datasets consist of images down-
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8.3. Future Works

loaded from the Internet. However, almost all of the online images are taken by human
photographers and are uploaded for some reason. In other words, online images are
guaranteed to have specific clear meanings from the beginning. In contrast, the na-
ture of real-world images that human and robots observe is totally different. They are
highly arbitrary and do not always have clear meanings. The true goal of generic image
recognition should be recognizing such real-world images. To realize this, in training a
system we may need to exploit real-world images closely related to the objective, such
as the ones taken by lifelog systems.
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Appendix A: Evaluation Protocol for
Image Annotation and Retrieval

In this thesis, we follow the standard evaluation protocol for image annotation and
retrieval [50; 88]. We describe the details here.

A.1. Evaluation Protocol for Annotation
The recognition system annotates each test image with five words. These words are
then compared with the ground truth labels. For a single word wi, let a denote the
number of images that can be correctly annotated, b denote the number of images that
originally include the label wi, and c denote the number of images that the recognition
system annotates with the word wi (correctly or not). Then recall and precision are
defined as:

Recall(wi) = a/b, (1)
Precision(wi) = a/c. (2)

These values are averaged over all the test words to obtain Mean-Recall (MR) and
Mean-Precision (MP), respectively. Because these metrics are a trade-off, we need to
evaluate the total performance using the F-measure:

F-measure =
2 ×MR ×MP

MR +MP
. (3)

Note that these scores change according to the number of output annotations by the
system, although this is fixed at five in the standard protocol. For example, Figure 1
shows the scores when our annotation method is applied to the Corel5K dataset with
a varying number of annotations. Naturally, the more annotations that are output,
the higher is the recall and the lower is the precision obtained. However, when the
number of annotations is too few compared to the number of ground truth labels, both
these metrics are remarkably low, because the variety of annotations is lost. Since
each image in Corel5K has 3.4 labels on average, precision drops when more than
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APPENDIX A: EVALUATION PROTOCOL FOR IMAGE ANNOTATION
AND RETRIEVAL
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Figure 1: Annotation scores for the Corel5K dataset with varying numbers of output
words. The proposed method (linear) + HLAC feature is used.

three words are output, while recall still increases. Practically, we should select an
appropriate number of annotations to be output according to the task setup. Moreover,
note that the theoretical upper limits for MR and MP do not reach one in many cases,
because images have a different number of ground truths in general.

In addition to the above metrics, we also evaluate the number of words with positive
recall (N+).

A.2. Evaluation Protocol for Retrieval
During retrieval, the system ranks the test images for each word. The system achieves
better performance for retrieval if relevant images are ranked higher. We evaluate this
with the Mean Average Precision (MAP).

Let Nt denote the number of candidate images for retrieval. The average precision
(AP) for a query word w is defined as follows.

AP(w) =
1∑Nt

i=1 yw
i

Nt∑
i=1

yw
i

i

i∑
k=1

yw
k , (4)
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1 32 54 76 8 9 10

Figure 2: Illustration of “car” retrieval results. Correct images are ranked 2nd, 5th, and
7th, respectively.

where i is the rank of each image and yw
i is a flag that is set to one if the i-th im-

age is related to w, otherwise zero. For example, we perform “car” image retrieval
with a dataset of ten images (Figure 2), of which three images are actually related
to “car”. If the retrieval system ranks these images as 2nd, 5th, and 7th, we get
AP(car)= 1

3

(
1
2 +

2
5 +

3
7

)
= 0.44.

MAP is the average of AP and is a standard evaluation metric for information
retrieval. We use two types of AP; one is the average over all testing words (MAP),
while the other is the average over the words that provide positive recall in annotations
(MAP R+).
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Appendix B: Kernel Principal
Component Analysis

B.1. Standard Implementation
First, we explain the standard implementation of KPCA, in which all training samples
are used for kernelization. Let N denote the number of training samples. Let us con-
sider a non-linear projection φ(x) that maps an input vector x onto a high-dimensional
feature space. Usually, φ is implicitly given by defining the inner product with a kernel
function. Specifically, using k(xi, x j) = 〈φ(xi), φ(x j)〉, we can compute inner products
in the original feature space without actually deriving the projection φ.

Let C denote the covariance matrix in the high-dimensional space, then

C =
1
N

N∑
i=1

φ(xi) −
1
N

N∑
j=1

φ(x j)


φ(xi) −

1
N

N∑
j=1

φ(x j)


T

. (5)

The solution of PCA in φ(x) space is obtained by solving the following eigenvalue
problem:

Cv = λv. (6)

Here, from the definition of C, Equation 6 is rewritten as follows:

1
N

N∑
i=1

φ(xi) −
1
N

N∑
j=1

φ(x j)



φ(xi) −

1
N

N∑
j=1

φ(x j)


T

v

 = λv. (7)

Thus, v can be represented as a linear combination of φ(xi).

v =
N∑

i=1

αi

φ(xi) −
1
N

N∑
j=1

φ(x j)

 (8)

= (Φ − Φ1N)α, (9)

where,
Φ = (φ(x1) φ(x2) ... φ(xN)) . (10)
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APPENDIX B: KERNEL PRINCIPAL COMPONENT ANALYSIS

1N ∈ RN×N is a matrix whose elements are all 1/N. Inserting this back into Equation 6,
we get

1
N

(Φ − Φ1N)(Φ − Φ1N)T (Φ − Φ1N)α = λ(Φ − Φ1N)α. (11)

Multiplying both sides by (Φ − Φ1N)T from the left, gives

1
N

(Φ − Φ1N)T (Φ − Φ1N)(Φ − Φ1N)T (Φ − Φ1N)α = λ(Φ − Φ1N)T (Φ − Φ1N)α. (12)

Here, we can omit Φ using a kernel trick as follows:

(Φ − Φ1N)T (Φ − Φ1N) = ΦTΦ − ΦTΦ1N − 1NΦ
TΦ + 1NΦ

TΦ1N (13)
= K − K1N − 1N K + 1N K1N , (14)

where Ki j = k(xi, x j). Using a kernel function, we can compute a Gram matrix K̃ =
K − K1N − 1N K + 1N K1N . Consequently, the eigenvalue problem is:

K̃2α = λNK̃α. (15)

Removing K̃ from both sides gives

K̃α = λNα. (16)

Eigenvectors have a constraint such that vT v = 1. We can rewrite this using Equa-
tions 9 and 16, to obtain

1 = αT (Φ − Φ1N)T (Φ − Φ1N)α (17)
= αT K̃α (18)
= λNαTα. (19)

The KPCA projection of input vector xs is computed as follows:

vT

φ(xs) −
1
N

N∑
j=1

φ(x j)

 = αT (Φ − Φ1N)T (φ(xs) − Φ1c
N) (20)

= αT (Ks − 1N Ks − K1c
N + 1N K1N). (21)

In the above, 1c
N ∈ RN is a column vector whose elements are all 1/N, and Ks is the

kernel base vector of xs, that is

Ks = (k(xs, x1) k(xs, x2) ... k(xs, xN))T . (22)
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B.2. Approximate Implementation Using a Small Num-
ber of Base Samples
The core idea of KPCA is to represent eigenvectors with a linear combination of train-
ing samples. These samples are called base samples. It is known that the more base
samples that are used, the better is the performance. However, since KPCA requires
computing an eigenvalue problem whose dimension is the number of base samples, it
is practically impossible to use all training samples as bases.

Here, we propose an approximate, yet efficient implementation using a small num-
ber of samples for kernelization. Let nK denote the number of base samples. As is the
case in Equation 9, we represent eigenvectors with a linear combination of nK samples.

v =
nK∑

m=1

βmφ(xm) (23)

= ΦBβ. (24)

Although in Equation 9 we subtract the mean in the high-dimensional space, we do not
do this here because this is a simple offset. ΦB is a matrix of nK samples, expressed as

ΦB = (φ(x1) φ(x2) ... φ(xnK )) . (25)

Inserting this back into the eigenvalue problem gives

1
N

(Φ − Φ1N)(Φ − Φ1N)TΦBβ = λΦBβ. (26)

Multiplying both sides by ΦT
B from the left, we get

1
N
ΦT

B(Φ − Φ1N)(Φ − Φ1N)TΦBβ = λΦ
T
BΦBβ. (27)

Here, we introduce the following replacements through a kernel trick.

ΦT
B(Φ − Φ1N) = ΦT

BΦ − ΦT
BΦ1N

= K′ − K′1N , (28)
ΦT

BΦB = KB. (29)

In the above, K′ ∈ Rn×N is a matrix of kernel base vectors of training samples, and
KB ∈ Rn×n is a Gram matrix of base samples.

Consequently, the objective eigenvalue problem is

(K′ − K′1N)(K′ − K′1N)Tβ = λNKBβ. (30)

The regularization condition for eigenvectors is as follows:

βT KBβ = 1. (31)
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Appendix C: Details of HLAC
Features

Here, we describe the color higher-order local auto-correlation (Color-HLAC) fea-
tures [93], used in many of our experiments. Color-HLAC is a color extension of
HLAC features [145] defined for gray images. Since this is an image-specific repre-
sentation, it does not require a preprocessing step as is the case with bag-of-visual-
words [40] (building visual words). Furthermore, as it can be extracted fairly quickly,
it is suitable for realizing scalable systems.

The Color-HLAC features enumerate all possible mask patterns that define auto-
correlations of neighboring points and include both color information and texture in-
formation. Figure 3 illustrates the mask patterns of at most the first order Color-HLAC
features. In this thesis we use at most 2nd order correlations, whose dimension is 739.

We extract Color-HLAC features from two scales (original size and half size) to
obtain robustness against scale change. In addition, we extract these features from
edge images obtained by a Sobel filter as well as from the raw images. Let xo1 denote
the color-HLAC features extracted from an original-size raw image, xe1 denote those
from an original-size edge image, xo1/2 denote those from a half-size raw image, and
xe1/2 denote those from a half-size edge image. We use x = (xT

o1
, xT

o1/2
, xT

e1
, xT

e1/2
)T as the

resultant image feature vector. Thus, the dimensionality thereof is 739× 2× 2 = 2956.
In this paper, we use the term “HLAC feature” to indicate this feature vector.
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APPENDIX C: DETAILS OF HLAC FEATURES
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Figure 3: Mask patterns of at most the first order Color-HLAC features.

136



Appendix D: Experimental Results for
Subsets of Flickr12M

Here, we summarize the experimental results presented in Section 7.2.3. We show the
annotation scores of each image feature for various subsets of Flickr12M.

• Figures 4, 5: Tiny image

• Figures 6, 7: RGB color histogram

• Figures 8, 9: GIST

• Figures 10, 11: HLAC

• Figures 12, 13: SURF GLC

• Figures 14, 15: SURF BoVW

• Figures 16, 17: SURF BoVW-sqrt

• Figures 18, 19: RGB-SURF GLC

137



APPENDIX D: EXPERIMENTAL RESULTS FOR SUBSETS OF FLICKR12M
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Figure 4: F-measures of Tiny image features for the 100K, 200K, and 400K subsets.
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Figure 5: F-measures of Tiny image features for the 800K and 1.6M subsets.
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0.04 0.045 0.05 0.055 0.06 0.065 0.07

20

50

100

200

300

0.04 0.045 0.05 0.055 0.06 0.065

20

50

100

200

300

0.07

0.04 0.045 0.05 0.055 0.06 0.065

20

50

100

200

300

0.07

0.002 0.003 0.004 0.005 0.006 0.007 0.008

20

50

100

200

300

0.009

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

20

50

100

200

300

0.002 0.003 0.004 0.005 0.006 0.007 0.008

20

50

100

200

300

0.009

PCA

PCAw

PLS

nPLS

CCA

CCD1

CCD2

d
im

en
si

on
a

li
ty

 (
d

)

Word centric F-measure (F  )w Image centric F-measure (F  )I

d
im

en
si

on
a

li
ty

 (
d

)
d

im
en

si
on

a
li

ty
 (

d
)

100K

200K

400K

Figure 6: F-measures of the RGB color histogram for the 100K, 200K, and 400K
subsets.
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Figure 7: F-measures of the RGB color histogram for the 800K and 1.6M subsets.
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Figure 8: F-measures of GIST features for the 100K, 200K, and 400K subsets.
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Figure 9: F-measures of GIST features for the 800K and 1.6M subsets.
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Figure 10: F-measures of HLAC features for the 100K, 200K, and 400K subsets.
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Figure 11: F-measures of HLAC features for the 800K and 1.6M subsets.
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Figure 12: F-measures of SURF GLC features for the 100K, 200K, and 400K subsets.
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Figure 13: F-measures of SURF GLC features for the 800K and 1.6M subsets.
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Figure 14: F-measures of BoVW features for the 100K, 200K, and 400K subsets.
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Figure 15: F-measures of BoVW features for the 800K and 1.6M subsets.
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Figure 16: F-measures of BoVW-sqrt features for the 100K, 200K, and 400K subsets.

150



PCA

PCAw

PLS

nPLS

CCA

CCD1

CCD2

Word centric F-measure (F  )w

800K

1.6M

Image centric F-measure (F  )I

d
im

en
si

on
a
li

ty
 (

d
)

d
im

en
si

on
a
li

ty
 (

d
)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

20

50

100

200

300

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

20

50

100

200

300

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

20

50

100

200

300

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

20

50

100

200

300

Figure 17: F-measures of BoVW-sqrt features for the 800K and 1.6M subsets.
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Figure 18: F-measures of RGB-SURF GLC features for the 100K, 200K, and 400K
subsets.
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Figure 19: F-measures of RGB-SURF GLC features for the 800K and 1.6M subsets.
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Appendix E: Hashing-based Rapid
Annotation

Here, we develop an approximate, yet extremely fast and efficient annotation method
by combining standard hashing methods with the CCD framework. Since each sample
is represented by a small Hamming code, millions of samples can easily fit in a single
computers memory. We develop the algorithm in the context of content-based image
retrieval (CBIR), as this is the core of non-parametric annotation methods. Finally, we
apply the algorithm to annotation problems.

E.1. Overview

CBIR has been studied for a long time, and is now flourishing in industrial applications.
However, it is still challenging to instantly retrieve a desired image from millions of
samples. The difficulty of CBIR stems from two main problems. First, image features
are generally high-dimensional, making a naive linear search infeasible for large-scale
problems, both in terms of computation time and memory use. Therefore, we need ef-
ficient indexing and search algorithms to handle massive amounts of high-dimensional
data. Nevertheless, it is extremely difficult for any method to search nearest neighbors
in a high-dimensional space. This is known as the “curse of dimensionality” problem.

The second problem is the so-called semantic gap; that is, low-level image features
are not directly related to the high-level meanings (Section 2.2.2). In general, many
search methods are designed for unsupervised problems. Specifically, they derive a
compact representation of an image approximating the original Euclidean distance.
While these methods are well suited to searching visually similar images such as near-
duplicates, it is still difficult to estimate the semantic distance between images. To relax
the semantic gap, it is reasonable to consider a supervised machine learning framework
that exploits corresponding modals such as textual information. However, in general,
training costs of supervised methods are expensive compared to those of unsupervised
ones. It is thus, challenging to apply such methods to very large-scale problems, which
is exactly our aim.
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In this thesis, we have worked on a multi-modal setting to enhance semantic im-
age retrieval. Specifically, in the CCD2 (Section 4.2.3) framework, we consider the
following problem. Suppose we have image features x ∈ Rp and corresponding text
features y ∈ Rq. Suppose also, that we have a database of N samples T = {xi, yi}Ni=1.
We wish to retrieve an image from the database that most closely resembles the query
image xQ. That is,

NN(xQ) = arg minx∈T D(xQ, {x, y}), (32)

where D is the distance between two instances. This is a reasonable setup considering
the exponential growth of the Internet. For example, using a photo taken with a mo-
bile phone as the query, one can retrieve semantically similar images included in web
documents without typing explicit keywords.

To compute distance and store samples efficiently, we derive small binary codes in
a topic space embedding both visual and textual similarities. D is computed in terms
of the Hamming distance between the binary codes. Since each sample is represented
by a few bytes of memory, we can conduct fast topic-level retrieval on a large-scale
database, even using a linear search. In experiments, we show the effectiveness of our
method on real problems, using the Flickr database containing 12 million images.

E.2. Related Work
We review previous studies of nearest neighbor search algorithms. In the beginning,
many researchers tried to speed up an exact nearest neighbor search. Binary search
trees (e.g. the kd-tree [12]) are representative examples. They realized a fast exact
nearest neighbor search in a relatively low-dimensional space. However, it became
apparent that these binary search methods are not effective for high-dimensional data
and even cost as much as a linear search [107; 199]. Speeding up an exact nearest
neighbor search in a high-dimensional space is still an unsolved problem today.

Therefore, many recent studies have focused on an alternative approach: an ap-
proximate nearest neighbor search. This framework relaxes the problem by giving
up searching for the exact nearest neighbors, and attempts to retrieve approximately
neighboring samples with a high probability. The objective is to satisfy the trade-
off between accuracy and speed for practical tasks. This idea was first proposed for
locality-sensitive hashing (LSH) by Indyk et al. [42; 85]. LSH constructs hash func-
tions using random projections so that similar samples collide. The LSH research
showed that we can control the trade-off between accuracy and speed with a theoret-
ical background. While the original LSH assumes a Euclidean distance as the sim-
ilarity measure for input samples, it has been modified to use arbitrary Mahalanobis
distance [97] and non-linear distance metrics [96].

LSH is capable of realizing a rapid nearest neighbor search on various high-dimensional
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data, and has been applied to many computer vision problems. However, the stan-
dard LSH based on hash tables only queries candidate samples and requires a final
re-ranking phase using the original features to determine the nearest neighbors in the
bucket. This means that we need to store all raw instances in memory to implement
the rapid retrieval, which is unrealistic for internet-scale problems.

A possible solution is to use binary hash values directly to represent each sam-
ple [35]. However, since the hash functions for LSH are generated randomly, hash
codes are not directly related to original distance. Therefore, recently, machine learn-
ing frameworks have been exploited for learning small binary codes that explicitly ap-
proximate the original Euclidean distance [160; 178; 202]. With this approach, fewer
bits are required to represent each sample. For example, spectral hashing [202] learns
binary codes in an unsupervised manner, using a spectral graph analysis of a uniform
distribution.

In a learning based approach, we can naturally integrate label (text) information
by considering a supervised framework. A pioneering work is BoostSSC [165], which
is based on AdaBoost [62]. Moreover, Torralba et al. applied a restricted Boltzmann
machine (RBM) [78; 160], a technique developed for information retrieval, to image
retrieval [178]. They showed that the RBM can more accurately compress GIST fea-
tures [144]. However, it has been pointed out that the training cost of an RBM is
extremely high.

Binary code learning is now an active research field. Recent works focus on a va-
riety of topics such as semi-supervised learning [115] and online code learning [194].

E.3. Our Approach
We apply unsupervised hashing methods to the semantic subspace obtained by the
CCD framework. In general, images and texts are already embedded in a low-dimensional
subspace (latent space) relaxing the semantic gap. Our objective is to learn small bi-
nary codes that approximate the Euclidean distance in the latent space. In the retrieval
phase, an image-only query is also coded as a binary vector. Then the nearest sam-
ples are retrieved in terms of Hamming distance. Further, using short codes (up to
approximately 30 bits), we can directly exploit them in building a hash table, result-
ing in an extremely fast retrieval whose computation time is constant in the number of
samples [178].

As described in Section 4.2.3, KL divergence in the latent space can be computed in
terms of Euclidean distance of r defined by Equations 4.18 and 4.19. For convenience,
here we call them topic features. We can expect that r is embedded in a Euclidean
space, where the semantic distance between samples can be computed in terms of
Euclidean distance. We apply standard unsupervised hashing methods to topic features
r and extract c bit binary codes. Note that topic features are zero-mean according to
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the definition thereof.

Simple Binarization

As a baseline, we simply binarize each dimension of the topic features setting the
threshold at zero, and use these as hash functions. Therefore, the code length c is equal
to d in this approach.

Locality Sensitive Hashing (LSH)

Hash functions for LSH are defined by random projections of feature vectors. Typi-
cally, the following are used to obtain binary codes.

h(r) = sign(wT r + b), (33)

where w is a random hyperplane whose components are independently sampled from
a p-stable distribution (a Gaussian in this work) [42], and b is a random offset sampled
from a uniform distribution. We randomly generate c hash functions to obtain c bit
binary codes. Note that we fix b = 0 since it yielded the best performance in our
experiments. Furthermore, it should be pointed out that for a dataset on the unit sphere,
approximately balanced codes are given by b = 0 [35; 115].

Spectral Hashing (SH)

Let W ∈ RN×N denote the affinity matrix of N samples, where W(i, j) = exp(−||ri −
r j||2/ε2). Let {hi}Ni=1 denote the c bit compressed binary vectors using c hash functions.
We want the Hamming distance of h to approximate the Euclidean distance of r. This
problem can be formulated as follows.

minimize:
∑

i j

Wi j||hi − h j||2, (34)

subject to: hi ∈ {−1, 1}c,
∑

i

hi = 0,

1
N

∑
i

hihT
i = I.

This problem is NP-hard, even for c = 1 [202]. It becomes much harder in general
cases where c > 1. However, by relaxing some constraints, we can easily obtain the
solution using spectral graph decomposition. In particular, if data follow a multinomial
unit distribution, we can derive an analytical solution including an out-of-samples ex-
tension, which enables rapid encoding [202]. Of course, real data do not generally
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follow a unit distribution. However, it is reported in [202] that merely rotating data
with PCA before hashing empirically leads to excellent hash codes. This indicates
that uncorrelated data are suitable for spectral hashing. Since the components of topic
features are uncorrelated, we can directly apply hash functions to them. For an imple-
mentation, we use the Matlab code provided by the authors of [202].

E.4. Retrieval Experiments
We used two datasets. The first is the LabelMe dataset [159]. LabelMe images are
manually segmented with a label given to each object. In this experiment, we only
used the object labels, discarding their spatial information. Of the publicly available
data, we used 60,000 samples for the retrieval database, and 1,191 samples as queries.

For the second dataset, we used images downloaded from Flickr. This dataset
consists of 12.3 million images and 4,130 words (Flickr12M). For further details, refer
to Section 7.1. We used a further 5,000 images as queries.

For the textual features (y), we used label histograms. To implement CCD, we set
the best canonical dimension d experimentally.

LabelMe Image Retrieval
We used GIST [144] as image features. Following [178], we evaluated the percentage
of the 50 true neighbors included in the n retrieved images. True neighbors are defined
in terms of the χ-square distance of the label histograms. Figure 20 shows the scores
(n = 5000) for a varying number of bits for coding, while Figure 21 shows the scores as
a function of the number of images retrieved (n). Overall, CCD based hashing methods
substantially outperform unsupervised methods. Using only dozens of bits, they can
achieve comparable performance to full GIST. In particular, CCD+LSH show consis-
tently improved performance as the number of bits increases. Figure 22 shows some
examples of retrieved images. With more bits, our method can retrieve semantically
similar images, rather than visually similar images.
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Figure 20: Retrieval performance with a varying number of bits for the LabelMe
dataset.
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Figure 21: Retrieval performance as a function of retrieved images for the LabelMe
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Flickr Image Retrieval
Since label histograms are binary in this setup, we define true neighbors as follows.
First, images are sorted in descending order of the number of matched labels. Then,
they are further sorted in ascending order of the number of mismatched labels. For
image features, we used bag-of-visual-words (BoVW) [40]. We created 1000 visual
words using the standard k-means algorithm. To evaluate full BoVW, we used the χ-
square distance for retrieval. Moreover, it has been noted in [151] that a linear kernel
of the square root of BoVW is equivalent to a non-linear Bhattacharyya kernel of the
raw BoVW. This means that square rooted BoVW is better suited to linear methods.
Therefore, we used square rooted BoVW as the learning method. Figures 23 and 24
show the results1. We see that the CCD based hashing methods again outperform un-
supervised ones. In this large-scale dataset, we need more bits to retrieve semantically
similar images. While SH based methods are relatively effective when a small number
of bits are used, their performance stagnates at an early stage. Although these meth-
ods are computationally effective, none of them can outperform full BoVW. On the
contrary, CCD+LSH show consistently improved performance and achieve reasonable
performance with more than 128 bits. Figure 25 illustrates some qualitative examples.

1Note that scores may seem low because ground truth labels themselves are noisy social tags.
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Table 1: Retrieval time per image for Flickr12M (s) using a single CPU.

Full BoVW Chi2 219
CCD 70dim 6.2
32 bit code 0.16
80 bit code 0.21
256 bit code 0.44

Table 2: Computation time for training with the Flickr12M dataset using an 8-core
desktop machine.

PCA 31m
CCD 4h 31m
SH 5h 7m
LSH 14m
CCD+SH 5h 42m
CCD+LSH 4h 34m

Computation Time

Table 1 gives the computation time per query for retrieving the nearest images in the
Flickr12M dataset using a single CPU (3.20 GHz). Note that feature extraction time
is not included. Also, we omit the binary coding time since it is negligible compared
to searching time. Using small codes, we can query 12 million images in less than a
second, even using a linear search. Table 2 gives the training time for each method
for the Flickr12M dataset using an 8-core desktop PC. Although CCD based methods
are more expensive than unsupervised methods, they can finish the training phase in
several hours on a single machine. This is satisfactory considering the scale of the task.

E.5. Annotation Experiments
Next, we apply the above mentioned hashing-based retrieval methods to k-NN an-
notation using the Flickr12M dataset. We follow the same experimental setup as in
Chapter 7. For image features, we use the concatenation of HLAC + SURF GLC +
SURF BoVW-sqrt, which showed the best performance (see Section 7.3). We refer
to this as “All features”. We first compress the image features using d = 200 CCD
dimensions, and then apply the hashing methods.

Figures 26 and 27 show the annotation performance as a function of hash length c.

165



APPENDIX E: HASHING-BASED RAPID ANNOTATION

As baselines, we also test normal CCD on several image features. All methods use the
full Flickr12M training dataset. Overall, SH is superior to LSH when a small number of
bits are allowed. However, its performance drops with more than 256 bits and becomes
worse than that for LSH. This result is similar to that which we observed in retrieval
experiments. It seems that 256∼512-bit codes allow a good trade-off between annota-
tion accuracy and computational costs. They outperform all single-feature CCDs, yet
the entire data fits into 375∼750 MB memory.

It should be noted that we can also control the trade-off for normal CCD by tuning
the latent dimension d and the size of the training dataset. This is an important issue
when considering the effectiveness of the hashing approach for annotation problems.
Therefore, we investigate annotation accuracy of CCD varying d and the dataset size.
We plot the scores as a function of total memory use in Figures 28 and 29. We super-
impose the results of the hashing based methods for comparison. Clearly, the hashing
approach gives a better trade-off, especially in terms of FW .

Thus, integrating hashing methods is quite effective, not only for CBIR, but also
for annotation.
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Figure 26: Annotation scores (FW) with a varying number of bits for the full Flickr12M
dataset.
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